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Message – General Chairs EUVIP2023

Ladies and gentlemen, esteemed colleagues, and distinguished guests, Welcome
to EUVIP 2023 – the 11th European Workshop on Visual Information Process-
ing! As the General Chairs of this remarkable event, we are truly honored to
have you join us for what promises to be an exceptional gathering, set in the
picturesque city of Gjøvik. EUVIP has always been a nexus for the exchange
of cutting-edge ideas, pioneering research, and transformative insights, and this
year, our focus on ”Visual Information Processing and its Applications” am-
plifies our commitment to advancing knowledge and innovation in this pivotal
domain.

Over the next four days (11-14 September 2023), you will immerse yourselves
in a diverse array of sessions, and discussions that span the breadth and depth of
visual information processing. Our carefully curated program features some of
the brightest minds from academia and industry who will share their expertise,
discoveries, and visions that are reshaping the landscape of visual information
processing.

Beyond the enlightening presentations and thought-provoking discussions,
EUVIP 2023 provides a unique platform for forging connections and fostering
collaborations. For the first time in EUVIP, we are thrilled to introduce a ses-
sion for 3MT presentations, adding a dynamic dimension to our conference. We
encourage you to make the most of this opportunity to network with peers, es-
tablish new partnerships, and pave the way for exciting collaborations that will
shape the future of visual information processing and its myriad applications.

We extend our heartfelt gratitude to the leading contributors who have played
pivotal roles in making this conference a success. Our appreciation goes out to
the authors for their outstanding ideas, the reviewers for their constructive crit-
icisms, the plenary and invited speakers for their generous knowledge sharing,
the organizing committee for their unwavering commitment, and the technical
program committee for their rigorous and fruitful efforts in shaping an engaging
program.

We also express our deep appreciation to the academic institutions, research
organizations, the European Association for Signal Processing (EURASIP), and
the Institute of Electrical and Electronics Engineers (IEEE) for their invaluable
support. Their dedication to promoting high-quality research encourages all of
us to push the boundaries of knowledge further.
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As we embark on this collective journey, let us remain open to the boundless
possibilities that visual information processing offers, receptive to new ideas,
and enthusiastic about the transformative potential of knowledge. We hope
that EUVIP 2023 will be a wellspring of inspiration and motivation for all,
sparking novel insights, fostering enduring connections, and propelling progress
in visual information processing and its applications.

We trust that your time in Gjøvik will be delightful, affording you the op-
portunity to explore the region’s natural beauty and immerse yourself in the
rich tapestry of Norwegian culture.

Thank you for being a part of this extraordinary event, and we eagerly an-
ticipate the rich exchanges and discoveries that await us at EUVIP 2023 – a
workshop dedicated to charting new frontiers in visual information processing.

Warm regards,

Faouzi Alaya Cheikh, Stefania Colonnese, and Azeddine Beghdadi

General Chairs, EUVIP 2023
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Message – Technical Chairs EUVIP2023

On behalf of the Technical Program Chairs of the 11th European Workshop on
Visual Information Processing, we are glad to welcome you to EUVIP 2023. In
the line of the previous successful EUVIP workshops, EUVIP 2023 focuses on
visual information processing, modelling, and analysis methods inspired by the
human and biological visual system. EUVIP 2023 provides a friendly and sup-
portive environment for rich scientific exchange on perceptually-inspired image
and video processing and communication methods, at a time in which Artifi-
cial Intelligence and Machine Learning methods are revolutionizing traditional
approaches.

The quality of the submitted papers reflects an increasing interest in the
workshop field. A total of 60 papers have been submitted to the technical
program from countries from the five continents. After a double-blind review
process involving two or three reviewers per paper, 33 papers have been ac-
cepted.

The technical program comprises four tutorials, as well as regular (oral and
poster) technical sessions, three special sessions and four plenary talks. Simi-
larly to previous editions, no difference is made between oral and poster pre-
sentations of regular papers.

Additionally, the workshop features a student paper award and a 3MT com-
petition, to distinguish the best short presentations by students of research ab-
stracts, thus providing young researchers with excellent opportunities to widen
their experience.

Finally, the technical program includes a Project Dissemination Session and
a Panel Discussion. We take the opportunity to thank all the technical pro-
gram committee members, the reviewers, the thematic session chairs, the dis-
tinguished speakers and the authors for their invaluable contribution to the
workshop success.

On behalf of the Technical Program Chairs, welcome to EUVIP2023! We
hope that, besides discovering the scientific content of the workshop, you will
enjoy the reception and the social program in the wonderful city of Gjøvik.
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Organising committee – EUVIP2023

• General Chairs

Faouzi Alaya Cheikh, NTNU, Norway

Stefania Colonnese, Sapienza University of Rome, Italy

Azeddine Beghdadi, USPN, France

• Technical Program Chairs

Seyed Ali Amirshahi, NTNU, Norway

Djamila Aouada, Luxembourg Univ., Luxembourg

Nuno Rodrigues, Polytechnic of Leiria , Portugal

• Special Sessions Chairs

Marius Pedersen, NTNU, Norway

Claudio Guarnera, York University, UK

• Tutorials Chairs

Giorgio Trumpy, NTNU, Norway

Mounir Kaaniche, USPN, France

Rahul Kumar, Oslo Univ. Hospital, Norway

• Student Session Chairs

Lu Zhang, INSA, Rennes, France

Tiziana Cattai, Sapienza University of Rome, Italy

Mohamed Riad Yagoubi, NTNU, Norway

• Awards Chairs

Ivar Farup, NTNU, Norway

Habib Zaidi, HUGE, Switzerland

Frederic Dufaux, Univ-Paris Saclay, France

• Industry Liaison Chairs

Ahmad Iftikhar, TietoEvry, Finland

Joseph Meehan, Huawei, France

Mohammad Derawi, NTNU, Norway

• Demos Exhibition Session Chairs
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Mohib Ullah, NTNU, Norway

Maja Krivokuca,InterDigital, Rennes, France

• Plenary Chairs

Kjersti Engan, University of Stavanger, Norway

Federica Battisti, University of Padova, Italy

Ahmed Bouridane, University of Sharjah, UAE

• Panel Discussion Chairs

Jon Yngve Hardeberg, NTNU, Norway

Mohamed Deriche, Ajman Univ., the United Arab Emirates
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• Project Dissemination Chairs

Sony George, NTNU, Norway

Rafael Palomar, Oslo Univ, Hospital / NTNU, Norway

Joaqúın Olivares, University of Cordoba, Spain

• Publications Chairs

Aditya Sole, NTNU, Norway
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• Publicity Committee
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Yubing Tong, University of Pennsylvania (UPenn), USA
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Qiangfu Zhao, AIZU University, Japan
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Hamid Hassanpour, Shahrood University of Technology, Iran

• Local Arrangements Committee

Adane Nega Tarekegn, NTNU, Norway

Jana Blahova, NTNU, Norway
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Technical program

Monday, September 11

8:30-14:00 Registration Desk Open
[Location: Entrance of Ametyst building]

09:30-12:00 Tutorials

Tutorial 1: Hard and soft metrology challenges in
Material Appearance
by Davit Gigilashvili and Adity Sole
[Location: Ametyst building, room A154]

Tutorial 2: Recent trends in MRI reconstruction
by Joseph Suresh Paul
[Location: Kobolt building, room K109]

12:00-13:00 Lunch

13:30-16:30 Tutorials

Tutorial 3: Color in computer vision
by Maria Vanrell
[Location: Beryll building, room B211]

Tutorial 4: From Volumetric Video to Interactive
Virtual Humans
by Peter Eisert
[Location: Gneis building, room G303]
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Tuesday, September 12

08:00 Registration Desk Open
[Location: Outside Eureka auditorium]

08:45 Welcome Ceremony
[Location: Helvin building, auditorium 1/3 Eureka]

09:00 Plenary 1: 3D Computer Vision for Future Robots
by Mohammed Bennamoun
Chair: Faouzi Alaya Cheikh

10:00 Coffee Break

10:15 Special session 1: AI in the City: Efficient, Scalable and
Privacy-Preserving Visual Scene Understanding in Man-
Made Environments
Chair: Amine Bourki
[Location: Helvin building, auditorium 1/3 Eureka]

10:20 Invited talk: Registration for Urban Modeling Based on Linear and
Planar Features
by Pascal Monasse.

10:50 Mono6D++: Learning Point Cloud Visibility for 3D Prior-
based Vehicle 6D Pose Estimation
by Yangxintong Lyu1, Olivier Ducastel1, Remco Royen1, Adrian
Munteanu1.
1Vrije Universiteit Brussel.

11:10 Attention-based Network for Image/Video Salient Object
Detection
by Omar Elharrouss1, Soukaina ElIdrissi ElKaitouni2, Younes
Akbari1, Somaya Al Maadeed1, Ahmed Bouridane3.
1Qatar University, 2SIdi Mohamed Ben Abdellah Univerisity,
3University of Sharjah.
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11:30 360-GAN: Cycle-Consistent GAN for Extrapolating 360-
Degree Field-of-View
by Jit Chatterjee1, Maria Torres Vega1.
1KU Leuven.

11:50 All Predictions Matter: An Online Video Prediction Ap-
proach
by Melan Vijayaratnam1, Marco Cagnazzo1, Giuseppe Valenzise2,
Enzo Tartaglione3.
textsuperscript1LTCI, Télécom ParisTech, Institut Polytechnique de
Paris, France, 2CNRS, 3Télécom Paris – Institut Polytechnique de
Paris

12:10 Lunch

Oral Session 1: Quality and Performance Assessment
Chair: Ali Amirshahi
[Location: Helvin building, auditorium 1/3 Eureka]

13:40 Evaluating the Vulnerability of Deep Learning-based Image
Quality Assessment Methods to Adversarial Attacks
by Hanene Fatima Zohra Brachemi Meftah1, Sid Ahmed Fezza2, Was-
sim Hamidouche1, Olivier Deforges3.
1INSA Rennes, 2National Higher School of Telecommunications and
ICT, 3IETR, Rennes.

14:00 Blind Video Stabilization Assessment based on convolutional
LSTM
by Mohamed Riad Yagoubi1, Seyed Ali Amirshahi1, Steven Le Moan1,
Azeddine Beghdadi2, Erik Rodner3.
11Norwegian University of Science and Technology, 2L2TI, University
Sorbonne Paris Nord, 3University of Applied Sciences, Berlin.

14:20 VSTAB-QUAD: A New Video-stablization Quality Assess-
ment Database
by Borhen eddine Dakkar1, Azeddine Beghdadi1, Faouzi Alaya-
Chekh2, Amine Bourki3.
1L2TI, University Sorbonne Paris Nord, 2Norwegian University of Sci-
ence and Technology. 3VizioSense.
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14:40 Improving Viewer Training in Visual Assessment
by Mathias Wien1 Vittorio Baroncini2.
1RWTH Aachen University, 2VABtech.

15:00 Poster Session: Detection, Classification, Data Protection
and Scene Analysis
Chair: Hantao Liu
[Location: Outside Eureka auditorium]
(Coffee will be available during poster session)

• MAiVAR-T: Multimodal Audio-image and Video Ac-
tion Recognizer using Transformers, by Muhammad Bilal
B Shaikh1, Douglas Chai1, Syed Islam1, Naveed Akhtar2. 1Edith
Cowan University, 2The University of Western Australia.

• Semi-Supervised Anomaly Detection in Electronic-Exam
Proctoring Based on Skeleton Similarity by Habibollah Agh
Atabay1, Hamid Hassanpour1. 1Shahrood University of Technol-
ogy.

• CD-COCO: A Versatile Complex Distorted COCO
Database for Scene-Context-Aware Computer Vision by
Ayman Beghdadi1, Azeddine Beghdadi2, Malik Mallem1, Faouzi
Alaya-Chekh3, Beji Lotfi4 1Paris Saclay University, 2L2TI, Uni-
versity Sorbonne Paris Nord, 3Norwegian University of Science
and Technology, 4University of Evry.

• Skeleton-based Hand Gesture Recognition using Geo-
metric Features and Spatio-Temporal Deep Learning Ap-
proach by Abu Saleh Musa Miah1, Jungpil Shin1, Md. Al.
Mehedi Hasan2, Yusuke Fujimoto1, Nobuyoshi Asai1. 1The Uni-
versity of Aizu, 2Rajshahi University of Engineering & Technol-
ogy.

• CTL-NET: Deep Learning Network for Cattle Teat
Length Trait Analysis by Hina Afridi1, Mohib Ullah1,
Øyvind Nordbø2, Anne Guro Larsgard3, Faouzi Alaya-Chekh1.
1Norwegian University of Science and Technology, 2Norsvin SA,
3Geno SA.
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15:00 Poster Session: Detection, Classification, Data Protection
and Scene Analysis
Chair: Hantao Liu
[Location: Outside Eureka auditorium]
(Coffee will be available during poster session)

• Underwater Object Detection in AUVs using Image
Enhancement and Deep Learning Models by Adane N.
Tarekegn1, Faouzi Alaya-Chekh1, Mohib Ullah1, Erik Sollesnes2,
Cornelia Alexandru3, Saeed Azar4, Erdeniz Erol5, George Suciu3,
1Norwegian University of Science and Technology, 2USEA Ocean
Data, 3BEIA consult International, 4OBSS Teknoloji A.Ş, 5Elkon.

• Wild Animal Species Classification from Camera Traps
using Metadata Analysis by Aslak Tøn1, Ali Shariq Imran1,
Mohib Ullah1. 1Norwegian University of Science and Technology.

• A hitchhiker’s guide to white-box neural network wa-
termarking robustness by Carl De Sousa Trias1, Mihai
Petru Mitrea1, Enzo Tartaglione1, Attilio Fiandrotti2, Marco
Cagnazzo1, Sumanta Chaudhuri1. 1Télécom ParisTech, Institut
Polytechnique de Paris, France, 2Università di Torino.

• Classical approaches and new deep learning trends
to assist in accurately and efficiently diagnosing ear
disease from otoscopic images by Dhruv C Jobanputra1,
Mohammed Bennamoun1, Farid Boussaid1, Lian Xu1, Jafri
Kuthubutheen1.1The University of Western Australia.

16:00 End of the day

16:30 Reception and Social Activity
Location: Gjøvik Science Centre, Address: Brennerigata 1, 2815
Gjøvik.
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Wednesday, September 13

09:00 Plenary 2: Quantitative imaging biomarkers in the era of
precision medicine
by Habib Zaidi
Chair: Djamila Aouada
[Location: Helvin building, auditorium 1/3 Eureka]

10:00 Coffee Break

10:15 Oral Session 2 : Medical Image Processing, Analysis and
Diagnosis
Chair: Marius Pedersen
[Location: Helvin building, auditorium 1/3 Eureka]

10:20 DCAN: DenseNet with Channel Attention Network for
Super-resolution of Wireless Capsule Endoscopy
by Hiren Vaghela1, Anjali Sarvaiya1, Pranav Premlani1, Abhishek
Agarwal1, Kishor Upla1, Kiran Raja2, Marius Pedersen2.
1Sardar Vallabhbhai National Institute of Technology, Surat, India,
2Norwegian University of Science and Technology.

10:40 Enhancement of Color Reproduction for Capsule Endoscopy
Images
by Léo Watine1, P̊al Anders Floor2, Marius Pedersen1, Peter
Nussbaum1, Bilal Ahmad1, Øistein Hovde3.
1Université de Strasbourg, 2Norwegian University of Science and
Technology, 3University of Oslo.

11:00 A Quality-Oriented Database for Video Capsule Endoscopy
by Tan-Sy Nguyen1, Marie Luong1, John Chaussard1, Azeddine
Beghdadi1, Hatem Zaag1, Thuong Le-Tien2.
1Université Sorbonne Paris Nord, 2HCMUT.

11:20 FEES-IS: Real-time Instance Segmentation of Flexible En-
doscopic Evaluation of Swallowing
by Weihao Weng1, Xin Zhu1, Mitsuyoshi Imaizumi2, Shigeyuki
Murono2.
1University of Aizu, 2Fukushima Medical University.

15



11:40 Identification of Children with ADHD from EEG Signals
Based on Entropy Measures and Support Vector Machine
by Med Maniruzzaman1, Med. Al Mehedi Hasan2, Taro Suzuki1,
Jungpil Shin1.
1The University of Aizu, 2Rajshahi University of Engineering & Tech-
nology.

12:00 Lunch

Oral Session 3 : Visual information display, rendering and
compression
Chair: Nuno Rodrigues
[Location: Helvin building, auditorium 1/3 Eureka]

13:40 Evaluating the effect of sparse convolutions on point cloud
compression
by Davi Lazzarotto1, Touradj Ebrahimi1.
1École Polytechnique Fédérale de Lausanne.

14:00 Study on Viewpoint-Dependent Time-Multiplexing for
Weighted Optimization of 3D Layered Displays
by Armand Losfeld1, Daniele Bonatto1, Gauthier Lafruit1, Mehrdad
Teratani1.
1Université Libre de Bruxelles.

14:20 Self-Supervised Super-Resolution Approach for Isotropic
Reconstruction of 3D Electron Microscopy Images from
Anisotropic Acquisition
by Mohammad Khateri1, Morteza Ghahremani1, Alejandra Sierra1,
Jussi Tohka1.
1University of Eastern Finland.

14:40 Using Deep Generative Models for Glossy Appearance Syn-
thesis and Exploration
by Abhinav Reddy Nimma1, Davit Gigilashvili1.
1Norwegian University of Science and Technology.
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15:00 ConvNeXt-ChARM: ConvNeXt-based Transform for Effi-
cient Neural Image Compression
by Ahmed Ghorbel1, Wassim Hamidouche2, Luce Morin1.
1INSA Rennes, 2TII.

15:20 Coffee Break

15:40 Plenary 3: Model-Based Optimization Meets Deep Learning
in Image Analysis
by Aleksandra Pizurica.
Chair: Stefania Colonnese.

16:40 3MT Session
Chairs: Tiziana Cattai

15:20 End of the Day

19:00 Conference dinner
Location: Samfundet, Address: Øvre Torvgate 24, 2815 Gjøvik
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Thursday, September 14

09:00 Plenary 4: Plenary 4: Deep learning for inverse problems
in imaging
by Aleksandra Pizurica
Chair: Kiran Raja
[Location: Helvin building, auditorium 1/3 Eureka]

10:00 Coffee Break

Special Session 2: Image Quality Assessment and Enhance-
ment in the Context of Medical Imaging and Diagnosis
Chair: Azeddine Beghdadi
[Location: Helvin building, auditorium 1/3 Eureka]

10:20 Invited talk: Image quality assessment for magnetic resonance imag-
ing: Is it up to the task?
by Mohamed Seghier.

10:50 Deep Learning Models for Low Dose CT Simulation
by Lumi XIA1, Meriem MO OUTTAS1, Lu Zhang1, Eric Frampas2,
Olivier Deforges1.
1IETR, INSA Rennes, 2Universitary Hospital.

11:10 Medical Point Clouds Enhancement at the Network Edge
by Paolo Giannitrapani1, Tiziana Cattai1, Stefania Colonnese1.
1Sapienza Universit di Roma, Italy.

11:30 Enhanced residue prediction for Lossless coding of multi-
modal image pairs based on image to image translation
by Daniel S Nicolau1, João Oliveira Parracho2, Lucas Thomaz2, Luis
MN Tavora1, Sergio M Faria2.
1Instituto Politécnico de Leiria, 2Instituto de Telecomunicacoes.
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11:50 Automatic lung nodule classification in CT images using
Two-stage CNNs and Soft-voting of Multi-scale Classifiers
by Lipeng Xie1, Yubing Tong2, Yuan Wan3.
1Zhengzhou University, 2University of Pennsylvania, 3Binghamton
University.

12:10 Lunch

Special Session 3: Spectral Imaging and its Applications
Chair: Sony George
[Location: Helvin building, auditorium 1/3 Eureka]

13:40 Invited talk: Spectral Imaging and its Application to Cultural Her-
itage
by Giorgio Trumpy.

14:10 Bayesian Multispectral Videos Super Resolution
by Hamid Fsian1, Jean Baptiste Thomas1, Pierre Gouton2, Jon Yngve
Hardeberg3.
1University of Burgundy, France, 2University of Burgundy, Franche-
Comté, 3Norwegian University of Science and Technology.

14:30 Centralized Sample Expansion and Prior Correlation Evalu-
ation for Hyperspectral Image Classification with Fully Con-
volutional Network
by Ningyang Li1, Zhaohui Wang1.
1Hainan University.

14:50 Coffee Break

15:10 Project dissemination session
Chair: Joaquin Olivares.

16:10 Panel discussion – Revolutionizing health care with AI-
assisted medical imaging analysis
Chair: Jon Yngve Hardeberg.

17:10 Closing ceremony
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Registration for Urban Modeling Based on Linear
and Planar Features

Pascal Monasse
LIGM

École des Ponts, Univ. Gustave Eiffel, CNRS
Marne-la-Vallée, France

firstname.lastname@enpc.fr

Rahima Djahel
INRIA

Université Côte d’Azur
Sophia Antipolis, France

firstname.lastname@inria.fr

Bruno Vallet
LASTIG

Univ. Gustave Eiffel, ENSG, IGN
Saint-Mandé, France

firstname.lastname@ign.fr

Abstract—The production of a Building Information Model
(BIM) from an existing asset is currently expensive and needs
automation of the registration of the different acquisition data,
including the registration of indoor and outdoor data. This kind
of registration is considered a challenging problem, especially
when both data sets are acquired separately and use different
types of sensors. Besides, comparing a BIM to as-built data is an
important factor to perform building progress monitoring and
quality control. To carry out this comparison, the data sets must
be registered. In order to solve both registration problems, we
introduce two efficient algorithms. The first offers a potential
solution for indoor/outdoor registration based on heterogeneous
features (openings and planes). The second is based on linear
features and proposes a potential solution for LiDAR data/BIM
model registration. The common point between the approaches
consists in the definition of a global robust distance between two
segment sets and the minimization of this distance based on the
RANSAC paradigm, finding the rigid geometric transformation
that is the most consistent with all the information in the data
sets.

Index Terms—Planar region, 3D segments, Openings,
RANSAC, BIM, Clustering, Registration, Global robust distance.

I. INTRODUCTION

The indoor and outdoor modeling of buildings from images
and dense point clouds is an important issue in building life
cycle management. The objective is to achieve a complete,
geometrically accurate, semantically annotated but nonethe-
less lean 3D CAD representation of buildings and objects
they contain in the form of a Building Information Model
(BIM). BIM helps to manage buildings in all their life cycle
(renovation, simulation, deconstruction). The first challenge is
to accommodate heterogeneous data as full building modeling
calls for data acquisition inside and outside the building. BIM
production is currently very expensive and needs automation
of the registration of the different types of acquisition data.
The indoor/outdoor registration is considered as a challenging
problem for this kind of production, especially when both data
sets are acquired separately and use different types of sensors.
Comparing a BIM to as-built data of the same building is
also necessary to perform building progress monitoring and
quality control. To carry out this comparison, both data sets
must be in the same coordinate system and a registration step
is necessary.

A. State of the art

1) Indoor/outdoor registration: The registration of indoor
and outdoor scans is a challenging problem for building
modeling. The lack of overlap between indoor and outdoor
data is the most prominent obstacle, especially when both
data sets are acquired separately and use different types of
sensors. Though indoor/outdoor registration is a very difficult
problem, there have been several attempts to solve it. State-of-
the-art approaches have used two types of features separately
or together: geometric and semantic features. The key points
are special points that hold important information about the
global structure of the point cloud. A key point integration
with the ICP algorithm (Iterative Closest Point) has been
proposed in [6] to register the point clouds. When overlap
between indoor and outdoor scans is low, additional informa-
tion provided by the data can help the registration algorithm.
The authors of [17] have extracted line segments of windows
to automatically align indoor and outdoor models. To register
scans with a small overlap in arbitrary initial poses, the authors
of [5] have proposed a plane/line-based descriptor dedicated
to establishing structure-level correspondences between point
clouds. A planar polygon detection and matching method has
been introduced in [1] to address the challenging problem of
indoor/outdoor registration. The choice of planar polygons as
appropriate attributes is grounded on the fact that they have a
spatial extent limited to the areas where they have supporting
points in the input data, so they form a good abstraction of
the LiDAR scans. A semantic feature-matching method has
been proposed in [7] to align an indoor and an outdoor point
cloud. The basic idea is to include both the objects’ semantic
information and spatial distribution pattern by designing a
semantic geometric descriptor (SGD). An efficient method for
merging disconnected indoor and outdoor models of the same
building into a single 3D model has been proposed in [16].
This method took semantic information (window information)
into consideration to obtain candidate matches from which an
alignment hypothesis can be computed.

2) LIDAR data/BIM model registration: Building Informa-
tion Modeling (BIM) is seen as an important technology for
building life cycle management. It plays a fundamental role
in several stages, such as building progress monitoring and

979-8-3503-4218-5/23/31.002023EuropeanUnion © 2023IEEE
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quality control. The progress monitoring task is based on
the comparison between the as-built (the scan model of the
building) and the BIM. To carry out this comparison, both
data sets must be in the same coordinate system, hence a
registration step is necessary. A patch-based co-registration
with several static laser scans and BIM has been introduced
in [8]. The main objective of this approach is to avoid the
need for ground control points. An efficient method to solve
the registration problem for scan/BIM has been proposed
in [9]. The proposed method uses the corner points of the
building structure and finds their congruent pairs to compute
the optimum transformation. The authors of [10] have studied
an automated registration method that aligns the as-built point
cloud of a building to its as-planned model using its planar fea-
tures. The basic idea is to measure the correspondence between
the plane segments through a matching cost algorithm. This
matching step leads to the determination of the transformation
parameters to correctly register the as-built point cloud to
its as-planned model. In order to co-register videogrammetric
point clouds with BIM, the authors of [18] have introduced an
improved matching algorithm to match 3d lines (from images)
and 3d planes (from BIM).

B. Overview and contributions

The work carried out has confirmed that the environment
and the type of data drive the choice of the registration algo-
rithm [12]. So, the objective of this work is to explore the fun-
damental properties of the data and the environment in order
to propose potential solutions for two challenging registration
problems: indoor/outdoor registration and BIM model/LiDAR
data registration. The man-made environments are rich in
planar and linear features because they are mostly composed of
elementary geometric primitives (planar polygons, openings,
. . . ) delimited by 3D segments. Given this property, we have
chosen to introduce new registration algorithms based on the
minimization of global robust distance defined between two
segment sets.

Our first methodological contribution is a new global dis-
tance between two 3D segment sets. Its first quality is that
it is robust to segments present in on set but having no
counterpart in the other set, yielding a nominal penalty for
such a case. Moreover, it takes into account the fact that a
long segment in one set may be detected as several shorter
segments in the other set by using a notion of overlap between
3D segments. Our proposition for registration is to minimize
this global distance using a guided RANSAC paradigm. This
is implemented in our two demonstrated applications: the
registration of indoor and outdoor LiDAR scans and the
registration of indoor LiDAR scan to a BIM.

In Section II, we detail the robust global distance between
3D segment sets. Its usage for indoor/outdoor registration is
explained in Section III and in Section IV for LiDAR data/BIM
registration. Some experimental evaluation is presented in
Section V and Section VI concludes the article.

Ai

Bi

Bj

Pij

Aj

di

dj

vij

Fig. 1: Bisector line associated to two 3D segments [AiBi]
and [AjBj ]. It goes through the barycenter Pij of the segment
endpoints and has direction vij.

II. GLOBAL ROBUST DISTANCE BETWEEN TWO SEGMENT
SETS

Inspired by [11], we propose to define a robust distance
between two 3D line segment sets in a way that minimizing
this distance will favor significant overlaps between segments
and small distances over these overlaps while being robust
to outliers, which is to be expected as it is possible that a
segment extracted from one data set will have no counterpart
in the other. We start first by defining the distance between
two segments si = [AiBi] and sj = [AjBj ] by projecting or-
thogonally si and sj on their bisector line B(si, sj), resulting
in segments s′i and s′j . B(si, sj) is the line going through Pij ,
the barycenter of the 4 endpoints (see Figure 1).

The direction of the bisector line is vij = (di+dj)/2. The
projection pij(P ) on the bisector line of a point P is defined
as

pij(P ) = Pij + ((P − Pij) · vij) vij , (1)

whose abscissa is cij(P ) = (P − Pij) · vij . The projected
segment s′k is defined by its endpoints [pij(Ak)pij(Bk)] and
its length is

|s′k| = |cij(Ak)− cij(Bk)|, (2)

and the overlap length is

|s′i ∩ s′j | =min(max(cij(Ai), cij(Bi)),max(cij(Aj), cij(Bj)))−
max(min(c(ijAi), cij(Bi)),min(cij(Aj), cij(Bj))).

(3)

The distance between the two segments is defined as

D(si, sj) =
1

2
(D(Gi, sj) +D(Gj , si)) , (4)

which involves the center points Gk = (Ak +Bk)/2, and the
point-to-segment distance

D(G, [AB]) = ∥G− p[AB](G)∥, (5)
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where the projection over the segment is

p[AB](G) =


A if (G−A) · (B −A) ≤ 0

B if (G−B) · (A−B) ≤ 0

A+ (G−A)·(B−A)
∥B−A∥2 (B −A) otherwise.

(6)

This latter corresponds to a projection on the line joining A
and B, then a clamping of this point to the segment [AB].
The distance between a segment s1 and a set of segments S2

is then defined as:

Dd(s1, S2) = d2 −
∑

s2∈S2

|s′

1 ∩ s
′

2|
min

(
|s′

1|, |s
′
2|
)

max(0, d2 −D(s1, s2)
2).

(7)

where parameter d ∈ R+ is a robustness parameter (all
segments above this distance are considered unmatched and
contribute equally to the distance). The first factor under the
sum is a relative overlap of the 3D segments and is within
the interval [0, 1]. Aggregating over all segments of S1, we
can write our global robust distance between two sets of 3D
segments:

Dd(S1, S2) =
∑
si∈S1

Dd(si, S2). (8)

Let us justify the distance (7). First, if all segments of
S2 are too far from si (D(si, sj) ≥ d2), all terms under
the sum vanish and a nominal cost d2 is paid. It means that
“unmatched” segments in S2 all contribute the maximum d2.
Second, if we have a segment sj that covers si (s′i ⊂ s′j)
the relative overlap is 1 and the associated cost is D(si, sj)

2

provided it is smaller than d2. The parameter d represents the
maximum distance for which two 3D segments are considered
as partially matching and a meaningful value related to the
precision of the scan can be selected.

III. INDOOR/OUTDOOR REGISTRATION

Openings are the most obvious common entity to link the
inside and outside data. As such, they can help the regis-
tration of indoor and outdoor point clouds, so they must be
automatically, accurately, and efficiently extracted. Therefore,
in order to improve indoor/outdoor registration, we integrate
the openings into our registration framework. The selection
of opening correspondences is a crucial step for a successful
registration because a bad choice can lead to a bad estimate
of the optimal transformation. In our case, the features are
two opening sets detected from indoor and outdoor scans. The
openings are not characteristic enough to match them robustly
independently. As an opening is defined by a rectangular shape
composed of four segments, two of them horizontal and two
vertical, and inspired by [3], we can write our registration
problem as a minimization of the global robust distance (8)
between two segment sets.

A. Feature extraction

1) Planar regions extraction: Due to its robustness to
noise and outliers, Random Sample Consensus (RANSAC) has

become the most popular method for LiDAR point cloud seg-
mentation. Despite this success, it can generate false segments
consisting of points from several nearly co-planar surfaces.
Inspired by [1] we have exploited two methods depending on
the nature of the data to overcome the RANSAC limitations.

a) RANSAC Based on Sensor Topology: For the outdoor
scans, acquired by a Mobile Mapping System (MMS), we have
access to the sensor topology (adjacency between successive
pulses in the same line and between lines). Following [2], we
exploit this property to extract compact planar patches.

b) MSAC: For the indoor scans, acquired in a static
mode, we do not have access to the sensor topology. So, we
could not use the RANSAC based on the sensor topology
method for the extraction of planar regions. We follow [1]
and use a straightforward adaptation of M-estimator Sample
Consensus (MSAC) [13], a RANSAC extension that provides
a potential solution to the spurious plane problem.

2) Openings detection: Inspired by [3], we have performed
the detection of the openings in three main steps as shown in
figures 2.

a) Segmentation and facade plane selection: Most open-
ings have a rectangular vertical shape of a limited extent (a
few meters) positioned within a vertical plane (a wall or the
facade). So, to efficiently extract them, we need to detect the
indoor and the outdoor planes and select the facades. The plane
detection step has been done using the methods described in
section III-A1 followed by polygons extraction using alpha
shape technique [15]. Finally, the vertical large polygons have
been selected as the facades.

b) Evidence of openings detection: As the LiDAR beams
usually cross the facade through openings, we have started by
detecting the evidence of openings as the intersection points
of these beams and the detected facades using Ray Tracing:

1) For each point Pi, we trace a ray Ri from the LiDAR
optical center O to this point.

2) we find P j
i , the intersection points of Ri with the

supporting planes Pj of each façade polygon Fj .
3) If one P j

i lies inside the polygon and the distance
between Pi and Pj > dmin, we add P j

i to the list Ej of
evidences of openings on wall j. we use the threshold
dmin, in order to exclude noisy points that may still
represent points of the facade.

c) Outline openings extraction: For each wall plane
Pj the evidences of openings Ej are grouped in vertical
rectangles:

• Extract the connected components of Ej with a distance
threshold.

• Estimate the minimum bounding rectangle of each com-
ponent.

• For each rectangle, transform each 2D corner to a 3D
point and create the four 3D line segments corresponding
to its edges to get a 3D representation of our shape as
shown in Figures (3.

The extraction of the connected components happens in a
graph whose vertices are the points indicating an evidence of
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Fig. 2: Illustration of opening detection steps.

Fig. 3: Feature extraction in LiDAR scans. Left: planar regions detected in an indoor scan. Right: Openings detected in an
outdoor scan.

openings and the edges link two points whenever their distance
does not exceed a fixed threshold.

B. Feature matching and transformation estimation

1) Direction clustering: For each indoor scan, we greedily
cluster planes Pi according to their normals n⃗i ordered by
decreasing number of inliers ni (number of points that have
a distance to the plane less than a given threshold), using the
algorithm proposed in [1], which produces for each scan three
clusters: Ch, Cv1 and Cv2 .

2) RANSAC minimization: We proceed as in [2] and apply
a RANSAC procedure based on two nested sampling strate-
gies. The first one consists in matching the vertical planes

representing the walls (facades) of the two scans, whereas
the second one consists in matching the selected segments
in the matched walls. The advantage of integrating these two
matching strategies is to simplify the selection of the two pairs
of segments and decrease the calculation time of the algorithm
by reducing the number of iterations. Each RANSAC iteration
consists in the following steps:

• Select a facade plane from each scan, p1 for indoor plane
and p2 for outdoor plane.

• Make the two planes coincide by applying a rotation R
on p1 around their line of intersection, the result is p′1

• Randomly selects a corner c1 (the intersection point of
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a horizontal segment and a vertical segment) from an
opening of p

′

1 and a corner c2 from an opening of p2.
• Compute the translation component in the plane between

the two selected corners, which fixes only two degrees of
freedom.

• Randomly select two planes p3 and p4, each one from an
indoor cluster perpendicular to the facade, and transform
them.

• Compute A: the intersection point of p
′

1 , p3 and p4; B:
the intersection point of p2 , p3 and p4.

• Find the missing degree of freedom of the translation as
the vector joining A and B.

IV. LIDAR DATA/BIM MODEL REGISTRATION

A. 3D line segment detection

In this work, we have chosen the algorithm proposed in [4]
to extract 3D line segments from LiDAR data. For the BIM
model, we use a Poisson disk sampling method [14] to sample
points over the whole model and extract the edges from the
sampled point cloud with the same method. It is a simple and
efficient algorithm that starts by segmenting the point cloud
into planar 3D regions via region growing and merging. All the
points belonging to the same planar region are projected into
the supporting plane of this region to form a 2D image. Then,
2D contour extraction and least square fitting are performed to
detect 2D line segments. Finally, these 2D line segments are
transformed back into the 3D frame to get the 3D segments.

B. Feature matching and transformation estimation

1) 3D segments directional clustering: The first step of our
pipeline is the clustering of the 3D segments of each dataset
according to their direction. This is done using our proposed
greedy algorithm described in Algorithm 1. For each input
data, we cluster 3D segments Li according to their direction di
in decreasing order of length, which produces for each dataset
three clusters: C1

1 , C2
1 and C3

1 for the first input data, C1
2 ,

C2
2 and C3

2 for the second input data. Notice that at step 5,
for computing the average direction of a cluster, care must be
taken to be invariant to the possibly opposite orientations of
the different segments. That is why the sign function is used,
so as to orient each direction as much along v1 as possible.

2) Direction cluster association: We associate each cluster
Ci

1 with the cluster Cj
2 with the smallest angle between the

mean direction:

Ak = {Ci
1, C

j
2}, |d(Ci

1) · d(C
j
2)| ≥ 1− ϵ (9)

C. RANSAC minimization

RANSAC has proven its robustness and efficiency as an
optimization algorithm in several applications. In this section,
we describe a new version of RANSAC based on the selection
of double pairs of segments at each iteration. The selected
segment pairs define a unique transform. The clusters are used
to ensure that these pairs of segments have compatible angles.
At each RANSAC iteration:

• We randomly select two cluster associations.

Algorithm 1 Greedy direction clustering

1: Input: Set of segments L, each segment Li = [AiBi] has
a director vector vi =

−−−→
AiBi, a length ∥vi∥ and a unit

direction di = vi/∥vi∥.
2: Clusters initialization:

• C1 = {L1} where L1 is the longest segment.
• C2 = {L2} where L2 is the longest one among

segments for which |di · d1| < cos(ϵ).
• C3 = {L3} where L3 is the longest one among

segments for which max(|di · d1|, |di.d2|) < cos(ϵ).
3: Mark L1, L2 and L3 as processed and all other Li as

unprocessed
4: Let Lcur be the longest unprocessed segment. If there is

no unprocessed segment, stop the algorithm, else mark
Lcur as processed.

5: Each cluster Ck has a direction d(Ck) computed as mean
of the directions of the 3D segments in the cluster:

d(C) =

∑
Li∈C sign(vi · v1)vi

∥
∑

Li∈C sign(vi · v1)vi∥

6: Compute kmin = argmink1− |dcur · d(Ck)|
7: Compute ni = 1− |dcur · d(Ckmin

)|
8: If ni < ϵ, add Lcur to the cluster Ckmin

.
9: Go back to step 4.

• We randomly select one segment from each associated
cluster.

• We compute the transform (rotation and translation) that
best aligns the matched 3D segments using the method
of Section IV-D.

• For this transform, we estimate the global robust distance
between all segments of the two sets using (8).

The final registration is given by the transformation that
minimizes the global robust distance.

D. Transform estimation

Once two pairs of segments {vi, vj} (first selected cluster
association) and {hi, hj} (second selected cluster association)
are associated, we estimate the rotation that best aligns the
corresponding two 3D lines. Let us call div , djv , dih and djh the
unit director vectors of vi, vj , hi and hj . We start by creating
the orthonormal basis Oi = (xi,yi, zi), where:

xi = di
v yi =

di
h − (di

h · xi)xi

∥di
h − (di

h · xi)xi∥
zi = xi × yi

We then compute the rotation R that aligns the associated
clusters as the base change matrix between Oi and Oj :

R = OjOi−1

(10)

To estimate the translation, we start by defining the point-
to-line distance:

dist(p, L = a+dt) =
∥d ∧ (a− p)∥

∥d∥
= ∥[d]×(a−p)∥ (11)
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assuming that d is normalized, and again calling [d]× the
matrix of the cross product with d. We look for the translation
t that minimizes:

ϵ =
∑
i

∥[d]×(ai − (pi + t))∥2 (12)

The minimum is reached when the gradient is null:

∇tϵ(t) = −2
∑
i

[di]
t
×[di]×(ai − (pi + t)) = 0 (13)

Noting:

w =
∑
i

[di]
t
×[di]×(pi − ai) M = −

∑
i

[di]
t
×[di]×,

we get a closed form solution for t:

t = M−1w (14)

V. EVALUATION AND DISCUSSION

In this work, we were interested in two challenging prob-
lems for BIM production and BIM comparison with the as-
built data in order to perform progress monitoring.

A. Indoor/outdoor registration

The first part of our contribution consists in proposing a
heterogeneous features-based registration algorithm to address
the challenging problem of indoor/outdoor registration. Our
proposed method takes as attributes a set of openings and
planar features. Using the openings we can find the rota-
tion and the translation in the facade plane (two degrees of
freedom). We recover the missing degree of freedom for the
translation by adding the planes. The best transformation has
been selected based on the minimization of the global robust
distance between two segment sets. We tested our algorithm on
real data, and the obtained results have proved the performance
of our algorithm to register the indoor and outdoor scans
whatever the initial position as shown in figure 4. As we do not
know the ground truth we only considered the visual results.
The introduced approach has exceeded the limitations of some
existing methods:

• Iterative methods require a good approximation of the
initial transformation to be able to converge toward the
correct solution.

• Opening-based methods such as the method proposed
in [3] have an uncertainty in the direction orthogonal to
the facade.

B. LiDAR data/BIM model registration

The second part of our contribution consists in proposing
a linear features-based registration algorithm to address the
problem of LiDAR data/BIM model registration. The optimal
transformation was estimated by minimizing the global robust
distance between two sets of 3D segments after extracting
them using a state-of-the-art algorithm. We have tested our
algorithm on real data corresponding to a construction site in
Spain. The obtained results have proved the performance of
our method to register the LiDAR data and the model BIM as
shown in figure 5.

VI. CONCLUSION AND FUTURE WORK

In this paper, we are interested in two registration problems
that remain challenging problems for urban modeling. The first
is the indoor/outdoor registration which represents a very im-
portant step for BIM production. In order to carry out this kind
of registration we have proposed an efficient algorithm based
on heterogeneous features(openings and planes). The second
is the LiDAR data/BIM model registration witch considered a
key step in performing progress monitoring and quality con-
trol. The common point of the two proposed solutions consists
in the definition of the global robust distance between two
segment sets and the minimization of this distance based on
the RANSAC paradigm. We can propose some improvements
in future works:

• LIDAR data/BIM model registration: extraction of sharp
edges on the BIM model and use them as input 3D
segments of this model for the registration

• Indoor/outdoor registration: if we can see pieces of the
indoor walls parallel to the facade during the outdoor
scan, we can detect them as points where the LiDAR
beams cross the facade. The extraction of the planes from
these points and their integration into our registration
framework can give us additional information on the
thickness of the facade which can increase the accuracy
of the registration.
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Extracted segments before registration
After registration

Fig. 5: Lidar data/BIM model registration. Left: the LiDAR scan (red) and the point cloud obtained by sampling the BIM.
Right: registered segments and registered LiDAR and BIM.
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Abstract—Point cloud visibility is a crucial attribute for 3D
tasks as it links the visible object points to a given viewpoint. In
this paper, we address the problem of point cloud visibility for
monocular vehicle 6D pose estimation. To this end, a network,
dubbed Mono6D++, is introduced which jointly predicts vehicle
poses and the associated points visibility. Our method mainly
consists of: 1) a multi-model feature extraction module and
2) a fusion unit for learning the pose- and visibility-specific
representations. Consequently, the proposed method significantly
outperforms the baseline approaches. Mono6D++ is capable
of handling heavily occluded, truncated and/or appearance-
ambiguous vehicles.

Index Terms—Monocular vehicle pose estimation, SE(3),
multi-modal data processing, intelligent traffic systems, deep
learning.

I. INTRODUCTION

Recently, the estimation of a vehicle 6D pose from a
single RGB camera has seen a surge of interest in both
academic and industrial communities due to its low cost and
applicability. It enables a spatial reasoning among vehicles,
which provides a potential of reliable mobility applications
for autonomous driving and intelligent traffic systems, such as
trajectory planning and traffic monitoring. However, directly
inferring the translation and rotation from a single view image
is an ill-posed problem as it lacks scale information. Thanks
to the advances in deep learning, the current state-of-the-art
approaches achieve promising results.

The existing monocular-based techniques retrieve the 6D
pose in either a 3D-generation or a 3D-utilisation manner. The
former generates the coarse geometrical representations which
are used in the subsequent steps. An energy function in terms
of modeling vehicle 3D keypoints is proposed in Mono3D++
[1], while 3D-RCNN [2] encodes complex CAD models by
using a low-dimensional shape space. It enables the network to
jointly predict the 6D pose and shape. A ‘render-and-compare’
loss optimises the difference of the shape projection between
the ground truth and predicted pose. However, the loss term is
only applicable in the pre-training phase on synthetic data as
it is impractical to obtain the real-world dense traffic depth.
GSNet [3] further advances 3D-RCNN by learning from 2D
specific vehicle features. Nevertheless, retrieving additional,
highly accurate labeled keypoints from images is expensive
and vulnerable to inaccuracies.

The 3D-utilisation methods regress the poses with the assis-
tance of the given 3D information. In particular, vehicles are

classified into different categories according to the appearance
or body shape in the image, which can be linked with an
appropriate shape corresponding to a specific vehicle category.
By doing so, the queried 3D geometry, which can come
in various forms such as 3D keypoints and point clouds,
complements the single-view RGB image.

DeepManta [4] utilises specific vehicle 3D features and fits
them with the corresponding colorful keypoints during pose
refinement phase. Since geometrically fitting a 3D model is
time-consuming, DeepManta is limited to offline applications.
On the other hand, Mono6D [5] suggests the usage of point
clouds, randomly sampled from CAD models, as 3D prior
information. It retrieves the appropriate 3D prior from a
database by employing a make and model recognition method
[6]–[9]. The network estimates vehicle poses by fusing the
RGB and point cloud channels without subsequent processing.
By design, the time-consuming pose refinement step is omitted
in Mono6D. Despite of its advantages, an important limitation
of Mono6D is that it does not account for the point visibility
information of the 3D prior.

The method proposed in this work follows a similar multi-
modal paradigm to that of Mono6D. In addition, it solves its
important limitation by determining the visibility information
and by assigning each point a label indicating whether or not
the point is visible from a given camera viewpoint. Learning
the visibility information has proven to be efficient in many
3D tasks [10], [11] as it associates the visible object com-
ponent with the corresponding viewpoint. To the best of our
knowledge, there exists no 3D prior-based method employing
point cloud visibility in the pose estimation process.

Our contributions can be summarised as follows:
• We are the first to tackle the point cloud visibility

problem for the 3D prior-based monocular vehicle 6D
pose estimation task.

• We formulate the visibility prediction as a binary clas-
sification task. The proposed method is able to jointly
distinguish the 6D pose and visible points by fusing
the representations of the vehicle image and complete
point cloud. To do so, we extend an existing public real-
world traffic dataset, Apollo3DCar, with the visibility
annotations of the 3D prior.

• The proposed method significantly outperforms the base-
line approaches on Apollo3DCar. Specifically, it substan-
tially reduces the translation error and improves the rota-
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Fig. 1. The pipeline of Mono6D++.

tion accuracy. Consequently, Mono6D++ is able to handle
challenging appearance-ambiguity, severe occlusion and
truncation cases.

The reminder of this paper is organised as follows: Section
II introduces the proposed Mono6D++. Section III presents the
experimental results and the analysis of our approach. Section
IV draws the conclusion of this work.

II. METHODOLOGY

A. Notation

In our 3D prior-based approach, the aim is to predict a
detected vehicle pose in SE(3) and the visibility information
of the corresponding 3D prior from a single-view image I .
We denote each sample si, as below:

si = (bi,xi,φi,pi,vi), (1)

where the dataset S = {si}Ni=1 and N is the number of
data samples. We represent each sample si by the amodal
bounding box bi ∈ R4, which consists of the height Hi,
the width Wi and the pixel coordinate (ui, vi) in the image
plane by projecting the vehicle 3D centroid; the cropped RoI
xi ∈ RHi×Wi×3 extracted from the entire image I; the pose
φi; the 3D prior pi ∈ Rn×3 containing n points; and the
visibility vi ∈ Rn of each point of the 3D prior. Each 3D prior
pi is a point cloud sampled from the corresponding vehicle
CAD model.

Similar to previous 3D prior-based methods, our method
predicts bi in the normalization form [12], and denotes φi by
[zi, qi], where z is the depth and qi is the rotation in the form
of quaternion. Given the camera intrinsic parameters,

K =

fx 0 cx
0 fy cy
0 0 1

 , (2)

the translation [x, y, z] of a vehicle can be computed as
following:

x =
z(u− cx)

fx
, y =

z(v − cy)

fy
, (3)

once [u, v] and z are known.
In the following part of this section, we present our visibility

annotation method for vehicles in monocular images during
the data generation phase. Then, we describe the proposed
3D prior-based method, dubbed Mono6D++, which jointly
predicts vehicle 6D pose and the corresponding pointcloud
visibility.

B. Point cloud visibility computation

To compute the point cloud visibility vi, we assume that
a detected vehicle in an RGB image I is labeled with the
associated bounding box bi, 6D pose φi, 3D prior information
pi and shape model. Let p̃i denote the point cloud which is
transformed by the pose φi.

Each vehicle point Pi = [xi, yi, zi] ∈ p̃i in the traffic scene
can be categorized as either visible or invisible. We define a
point as invisible if it satisfies any of the following conditions:
1) it is occluded by the vehicle itself, 2) it is occluded by
other objects, or 3) it is truncated by the image. Otherwise, we
consider the point as visible. Note that regarding condition 2,
’other objects’ solely refers to other vehicles since the dataset
lacks point cloud information for objects other than vehicles.

Inspired by the ray casting algorithm [13], we construct a
virtual line segment OPi between the camera center point O
and Pi whose visibility must be determined. If OPi intersects
the object mesh at the point Qi and Pi ̸= Qi, Pi is invisible.
Otherwise, if Pi = Qi, Pi is visible.

Among the points classified as invisible, a part of them
are self-occluded when the corresponding intersection point is
located on the vehicle itself. The remaining invisible points are



occluded by other vehicles present in the scene. On the other
hand, within the subset of points classified as visible after ray
casting, there exists a subset labeled as invisible due to their
projection on the image plane being truncated

Consequentially, vi is a vector consisting of zeros and ones
which represent invisible and visible points, respectively.

C. Mono6D++ approach

As shown in Figure 1, given a detected vehicle in the
image, Mono6D++ firstly queries the corresponding 3D prior
from a vehicle database. Then, the features of the RGB and
point cloud channels are learnt by a feature extraction module.
Afterwards, a fusion unit is designed to fuse the multi-modal
representations. Subsequently, the visible information of the
prior and the pose are predicted by a visibility block and a
pose estimation module, respectively. We detail each of these
modules in the following.

3D prior acquisition. As stated in [5], a proper 3D
geometry can be retrieved from a vehicle prior database in
accordance with the make and model (M&M) information.
Using the existing recognition techniques [6]–[9], M&M can
be extracted from the RGB image. By doing so, the retrieved
3D data can be utilised in the subsequent modules as prior in-
formation and complementary modality data for the monocular
6D pose estimation task. In the proposed method, we follow
this 3D prior query paradigm.

Feature extraction module. For the task of 6D pose
estimation, it has been established by [14], [15] that using
separate branches is an effective approach to extract efficient
representations for multi-modal data. Therefore, we employ
two distinct branches dedicated to the image and point cloud
modalities. As shown in Figure 1, a ResNet-based backbone
[16] denoted as E is designed to extract multi-resolution image
embeddings, while a PointNet-like backbone [17], M, learns
geometry information from the 3D channel. Let gi = E(xi)
and mi = M(pi).

Fusion for pointcloud visibility and pose estimation. The
fusion module follows the design shown in Figure 1 such
that the multi-modal features gi and mi can be fused for
visibility- and pose-specific representative features. A novelty
of our method is that we employ the visibility of each point of
the queried 3D prior. To do so, we formulate the prediction as a
binary classification task where the label of each point belongs
to {visible, invisible}. To optimize the predictive visibility
denoted as v̂i, we employ the Binary Cross Entropy (BCE)
loss [19], which is defined as follows:

lvisi = −(vi log(v̂i) + (1− vi) log(1− v̂i)). (4)

The predicted rotation, bounding box, depth and prior visibility
are denoted as q̂i, b̂i, ẑi and v̂i. As [3], [5], smoothL1 loss
[20] and L1 loss are used to optimise the predictions of the
2D bounding box and 6D pose, respectively. Let us denote the
loss functions following:

lbboxi = smoothL1(b̂i − bi), (5)

lroti = | q̂i

∥q̂i∥
− qi|, (6)

lzi = |ẑi − zi|, (7)

Thus, we represent the final visibility loss Lvis, bounding box
loss Lbbox, rotation loss Lrot and depth loss Lz respectively
as:

Lθ =
1

N

N∑
i=1

lθi , (8)

where θ ∈ {vis, bbox, rot, z}.
Joint loss optimization. The final loss function Ltotal is

defined by:

Ltotal = λvisLvis + λrotLrot + λzLz + λbboxLbbox. (9)

Both the visibility and vehicle pose are optimised by minimis-
ing Ltotal when we set λθ = 1, for all θ ∈ {vis, rot, z, bbox}.

III. EXPERIMENTS

A. Network details

We implement the proposed method based on Mono6D [5].
ResNet18 [16] and PointNet [17] are used as feature extractors
for the RGB and pointcloud channels, respectively.

B. Dataset

We perform the experiments on the real-world dataset,
Apollo3DCar [18], which is commonly used in the 6D pose
estimation literature. It consists of 4036/200 color images for
training/validation, respectively. All the vehicles are coarsely
classified into 79 categories, each associated with the cor-
responding 3D CAD models. We use the same 3D priors
as Mono6D [5] which are randomly sampled from each
vehicle CAD model. To augment the images, we apply random
cropping, keep-ratio resizing, and adjustments of brightness
and hue saturation.

C. Training schema

We implement Mono6D++ in Pytorch [21]. The network is
trained by an Adam optimizer [22] with initial Learning Rate
(LR) of 10−4. The LR decays following a cosine annealing
policy [23] in which the LR is reduced to 5× 10−5 after 150
epochs. We set 64 as batch size during training phase. All the
experiments are tested on a machine equipped with a 2080
NVIDIA GTX GPU.

D. Evaluation metrics

Following [3], [5], [18], both the absolute and relative
versions of the instance 3D average precision (A3DP-Abs,
A3DP-Rel) are reported in the paper. We present the results
under the loose and strict criteria [18], denoted as c-l and
c-s respectively. Moreover, we measure the Average Relative
Euclidean Distance (ARED) of the translation, as well as the
accuracy with threshold δ and the median error in degrees
(Mederr) of the rotation. We compute the accuracy of the point
cloud visibility for the ith vehicle instance as follows:

acci =
TPi + TNi

Ni
, (10)
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS.

Method A3DP-Rel A3DP-Abs Method category
mean ↑ c-l ↑ c-s ↑ mean ↑ c-l ↑ c-s ↑

DeepMANTA [4] 16.04 23.76 19.8 20.10 30.69 23.76 3D-utilisation
Kpts-based [18] 16.53 24.75 19.8 20.40 31.68 24.75 3D-utilisation

3D-RCNN [2] 10.79 17.82 11.88 16.44 29.70 19.80 3D-generation
Direct-based [18] 11.49 17.82 11.88 15.15 28.71 17.82 3D-generation

GSNet [3] 20.21 40.50 19.85 18.91 37.42 18.36 3D-generation

GSNet [3](IoU > 50%) 25.51 49.08 23.16 19.85 43.89 17.09 3D-generation
Mono6D [5] (IoU > 50%) 30.54 59.76 27.25 18.63 40.43 17.78 3D-utilisation

Proposed method (IoU > 50%) 38.67 61.77 41.80 27.43 48.98 29.13 3D-utilisation

TABLE II
DETAILED COMPARISON WITH GSNET [3] AND MONO6D [5].

Method R T

acc(π
6
) ↑ Mederr ↓ ARED ↓

GSNet 95.90% 3.17 5.20%

Mono6D 96.14% 2.66 4.28%

Proposed method 97.18% 2.49 3.09%

where TP and TN denote the number of True Positive and
True Negative visibility classifications and N the number of
points of each 3D prior.

E. Results and discussions

In Table I, we compare the proposed method with the
state-of-the-art techniques. The results of the baseline methods
are extracted from Mono6D [5]. As A3DP jointly estimates
6D pose and vehicle shape, we ensure a fair comparison by
following the setup described in Mono6D. More specifically,
we use the ground truth shapes as the estimated shapes for
GSNet (IoU > 50%), Mono6D (IoU > 50%) and Ours
(IoU > 50%). One can note that by predicting the visibility
information, Mono6D++ significantly outperforms the baseline
methods providing the best absolute and relative A3DPs. As
shown in Table II, compared to Mono6D, Mono6D++ achieves
a 1.19% reduction in translation error and more than 1%
improvement in rotation accuracy.

Furthermore, based on the depth of the vehicles, we divided
the validation set into 5 subsets. As shown in Figure 2,
both Mono6D and Mono6D++ exhibit lower translation errors
when the distance between the vehicle and the reference
camera decreases. The distant vehicles appear more blurry
and indistinguishable in the image, which leads to inefficient
RGB features and reduced accuracy. Additionally, though the
accuracy of the predictive visibility steadily drops, as indicated
in Figure 3, the proposed method is able to substantially
alleviate the ARED errors of Mono6D in each group in
Figure 2. Moreover, our method achieves similar performance
as Mono6D but for the vehicles belonging to the further
group. One notes that the median ARED error predicted by
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Fig. 2. The ARED of Mono6D and proposed method in function of distance.
Triangular symbol represents the median ARED of each box.
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Fig. 3. The average accuracy of the predicted visibility in function of distance.

Mono6D++ for the ‘200 <’ group is similar to that of the
‘150− 200’ group of Mono6D.

The results in Figure 4 show that Mono6D++ can es-
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(a) (b) (c) (d) (e)
Fig. 4. The bird’s eye view of the detected challenging vehicles. (a)-(b) Severe occlusion. (c)-(d) Truncation. (e) Vehicle appearance ambiguity. The arrow
denotes the orientation of vehicle head.

timate highly accurate rotations for the challenging cases
when Mono6D fails: 1) vehicles are severely occluded and/or
truncated, leading to a limited visible component in the image
(Figure 4 (a)-(d)), and 2) the frontal appearance of the vehicle
is ambiguous with the back in special viewpoints, which
introduces a confusion in determining the head orientation
(Figure 4 (e)). Learning the visibility assists the network in
identifying the visible vehicle 3D structure in the camera
viewpoint. By doing so, Mono6D++ can extract more efficient
multi-modal pose-specific representations than Mono6D as the
latter uses complete vehicle point clouds.

IV. CONCLUSION

In this work, we tackle the point cloud visibility problem
for monocular 3D prior-based vehicle 6D pose estimation. Our
proposed method, Mono6D++, predicts a vehicle pose together
with the visibility information of the shape prior. The exper-
imental results demonstrate that Mono6D++ achieves more
accurate rotation and translation with lower error compared
to the baseline methods. Furthermore, our approach is able
to handle severe occlusions, truncation and the challenging
vehicle front-back ambiguity.
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Abstract—The goal of video or image salient object detection
is to identify the most important object in the scene, which
can be helpful in many computer vision-based tasks. As the
human vision framework has a successful capacity to effortlessly
perceive locales of interest from complex scenes, salient object
detection mimics a similar concept. However, the salient object
detection (SOD) of complex video scenes is a challenging task.
This paper mainly focuses on learning from channel and Spatio-
temporal representations for image/video salient object detection.
The proposed method consists of three levels, the frontend, the
attention models, and the backend. While the frontend consists
of VGG backbone which ultimately learns the representation of
the common and the discrimination features. After that, both
Attention, Channel-wise, and Spatiotemporal models are applied
to highlight the significant object using a feature detector and to
calculate the spatial attention. Then the output features are fused
to obtain the final saliency result. Experimental investigation
evaluations confirm that our proposed model has proved its
validity and effectiveness compared with the state-of-the-art
methods.

Index Terms—Image Salient Object Detection, Video Salient
Object Detection, Image segmentation, semantic segmentation.

I. INTRODUCTION

Salient object detection is the detection of the most im-
portant object in an image/video. The human vision system
has an effective ability to easily recognize regions of inter-
est from complex scenes, even if the focused regions have
similar colors or shapes as the background. But automatic
detection can be difficult due to scale variation as well as
the complexity of the scene. Therefore, salient object detection
from images/videos plays an important role in many computer
vision applications such as motion detection [1], semantic
and instance segmentation [2], [3], object detection [3], [8],
and many others. Many methods have been proposed for
salient object detection on image and video using different
techniques such as spatiotemporal analysis [5], [8], [29], [30],
3D analysis [9], [10], or using deep neural networks [11]. For
example, the authors in [12] proposed an improved salient

object detection using a hybrid Convolution Recurrent Neural
Network. In another work, ConvLSTM has been used. While
ConvLSTM efficiently captures the dynamics of saliency by
learning the shift of human attention [37]. The proposed
method optimizes functionality from multiple networks, typi-
cally consisting of spatial and temporal sub-networks. While in
[38] the authors proposed a network by focusing on the mode
of movement and the transmission of the continuity of the
object. Encoder-decoder models based on fully convolutional
networks (FCNs) have remarkably improved the performance
of pixel-by-pixel image-to-frame learning operations [16].
Essentially, the tendency of the main SOD methods developed
in recent years indicates that most of them operate in the
encoder-decoder framework. Several researchers have devel-
oped encoder-decoder-based structures for the SOD task like in
[46]. While in [47] the authors proposed a connectivity-based
approach called bilateral connectivity network (BiconNet),
which uses connectivity masks together with saliency masks
as labels for effective modeling of inter-pixel relationships and
object saliency. Techniques, such as Multi-scale Interactive
Network for Salient Object Detection [48], are also developed
and introduced into SOD models. In this paper, we proposed
a CNN-based method consisting of analyzing the channel and
spatial features in the image/video for detecting silent objects.
Unlike, the proposed methods, the channel features are not
used widely to detect the saliency. while it can give help in
learning due to the information that can be extracted from the
channel of objects. For that, the fusion of spatial and channel
features can improve the learning of different aspects in the
image/video to extract the saliency of objects. A description
of the proposed method is presented in the following sections.

The rest of the paper is organized as follows. The second
part briefly introduces related research work, the third part
introduces the network model proposed in this paper in detail,
the fourth part shows the experimental details of our paper,
and finally, a summary of this paper is presented.

979-8-3503-4218-5/23/31.00 © 2023IEEE
35



TABLE I
IMAGE/VIDEO SALIENCY OBJECT DETECTION METHODS

Method Technique Datasets
Tang et al. [5] Spatiotemporal attention neural networks FBMS, DAVIS
STA-Net [6] Spatiotemporal attention network for VSOD ViSal, DAVIS
Shokri et al. [11] VSDO using deep non-local neural networks DAVIS, FBMS
Cong et al. [13] Sparse reconstruction and CNN detection network DAVIS, ViSal, SegTrackV1
Tu et al. [14] Collaborative graph learning network on RGB and thermal images VT821
Huang et al. [15] Super-pixel segmentation and multi-scale learning network MSRA10k, ECSSD, Pascal-1500
Chen et al. [25] LSTM-based network SegTrackV2, DAVIS
Tased-net [26] Spatial encoder-decoder network Hollywood2, UCFSports
XU et al. [27] Motion Energy and Graph Clustering UVSD, DAVIS
ConvLSTM [29] Multi-scale spatiotemporal ConvLSTM model FBMS, DAVIS, MCL
CAGNet [32] Fusion of feature extraction network and the feature guidance network DUTS, DUT-OMRON, HKU-IS
Wang et al. [33] Deep evolution of the graph GCN structure to accurately predict VSOD DAVIS, DAVIS,SegV2, FBMS, MCL

II. RELATED WORKS

Image/ Video salient object detection (VSOD) represents
an important task in several real-world domains like video
segmentation [39], [40], video compression [41], [42], video
captioning [43], autonomous driving [44], [45]. However,
some difficulties can affect the performance of any method
such as the scale variation, image resolution, and scene com-
plexity. In the following, we present some existing works for
image and video salient object detection. while some of these
methods are summarized in Table I in terms of techniques and
datasets used in each method.

Image saliency detection: has been widely studied during
the last decades. Therefore, We will consider some influential
works. For example, in [14] the authors used a collaborative
graph learning network. Huang et al . [15] proposed Image
saliency detection via multi-scale iterative CNN by fusing each
scale of the network to generate the final results. Zhang et al.
[16] proposed Gradient-induced co-saliency detection. Jiang
et al. [17] proposed Robust visual saliency optimization based
on bidirectional Markov chains. Wang, X. [18] proposed a
Region-based depth feature descriptor for saliency detection on
a light field. Jian et al. [19] proposed Visual saliency detection
by integrating spatial position prior to object with background
cues. While Liu et al. [28] proposed The Single Stream
Recurrent Convolution Neural Network (SSRCNN) borrows
the VGG-16 network as the main backbone that first globally
detects salient objects, and then applies the Depth Recurrent
Convolution Neural Network (DRCNN) top-down side-output
sub-network that hierarchically and progressively specifies the
details of salient objects from depth to shallowness. The
SSRCNN with four-channel RGBD inputs and the DRCNN
sub-network is trained comprehensively by deep supervised
learning. In [32] the authors proposed a content-based feature
guidance network (CAGNet) containing three networks: the
feature extraction network that extracts contextual information
at multiple scales, the feature guidance network that guides
the extracted features by exploiting the spatial details of the
low-level features and the semantic information of the high-
level features, and the feature fusion network that efficiently
integrates the guided features to generate the saliency map

[23]. Also, in [34] the authors proposed a saliency boundary
detection stream and a saliency detection stream. While depth
information is used to generate accurate saliency boundaries at
four scales. Then, RGB images are used to combine multi-level
multi-scale contextual feature maps and saliency boundary
feature maps through an attention module to produce the four-
scale saliency prediction maps. All proposed image salient
methods succeed in salient object detection in simple scenarios
but they suffer from many challenges including scale variation
and the complexity of the scene.

Video saliency object detection: Besides the aforemen-
tioned saliency prediction methods for image, video saliency
detection methods has some influential works including the
detection of an object in a video stream that can offer an
easy way to track the detected object. Also, it can make
semantic and instance segmentation much easier. For that,
object saliency detection from video become an interesting
task in computer vision. Many methods have been proposed
to overcome the challenges and using different techniques. For
example, in [13] the authors proposed a salient object detection
method via sparsity-based reconstruction and propagation. The
authors in [20] proposed a Multi-level model for video saliency
detection. The method used a multi-scale representation to
take benefit from different scales of the network. While many
methods worked on the type of network like in 3DCNN [9],
[10], Adaptive diffusion [24] or the type of features used like in
deep non-local neural network [11], Motion Quality Perception
[21]. Also, some methods are based on the many inputs data
to implement their network [31]. For example, Wang et al.
[33] proposed a deep evolution of the graph convolutional
network GCN structure to accurately predict salient objects
in videos, where long-term structural dependencies between
frames are explored. and adaptively evolved the structure
of the clustering graph, which propagates the information
flow hierarchically, reduces redundant edges, and adapts the
graph to moving objects. The authors in [36] based on the
intrinsic characteristics of light fields is to develop a multi-
task collaborative network for salient object detection in light
fields by leveraging collaborative learning of multiple tasks
including edge detection, depth inference, and salient object
detection.
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Fig. 1. Flowchart of the proposed network.

The spatiotemporal analysis is one of the key solutions
for good object detection in video. many methods. While the
spatial relationship between regions in a frame as well as the
temporal coherence of the regions allows accurate learning of
different characteristics and features. For that, the authors in
[5] proposed Video salient object detection via spatiotemporal
attention neural network. While in [6] the authors proposed
a spatial-temporal attention network for video salient object
detection. In the same context, Huang et al. [7] proposed
Learning channel-wise spatiotemporal representations. Chen
et al. [25] improved robust video saliency detection based
on long-term spatial-temporal information. Min et al. [26]
proposed a Temporally-aggregating spatial encoder-decoder
network. Graph clustering with motion energy and spatiotem-
poral abjectness to detect the salient objects [27]. While in
[29] proposed an LSTM-based network that introduces space-
based and channel-based attention mechanisms and improves
the network’s ability to extract high-level semantic information
and low-level spatial structure features. Fang et al. proposed
a method for detecting salient objects in a video based on
deep semantic and spatiotemporal cues, which consists of three
components: the Conv2DNet for learning semantic features of
objects, the Conv3DNet for learning spatiotemporal features,
and the Deconv3DNet for learning sharing by merging se-
mantic and spatiotemporal features [30]. The authors in [35]
proposed a cross-attention-based encoding-decoding model in
the Siamese framework (CASNet) for salient object detec-
tion in video. which consists of two parts: A cross-attention
module is designed to capture the short-term spatiotemporal
dependency between two adjacent video frames. In addition,
a structure integrating the self-attention and cross-attention
modules is integrated into a Siamese framework to preserve
the spatiotemporal correlation of salience and increase the
consistency of salience detection between two adjacent video
frames.

III. PROPOSED METHOD

We proposed an encoder-decoder-based network for im-
age/video salient object detection. The proposed model con-
sists of an adapted VGG model with the introduction of a
channel-wise attention module between VGG layers and then
cascaded spatial-wise attention at the end of the network.

In order to implement the proposed model, we used an
adapted version of the VGG model with Channel and spatial
attention models. Unlike the other method, we used channel-
wise attention modules to ensure the extraction of the im-
portant features at each phase of the network. Because in a
complex scene, the foreground contains some regions that can
be similar to the background in terms of texture. In order
to differentiate between the foreground and the background,
channel-wise attention is designed for that purpose. Also, we
used a cascaded spatial attention module to focus on spatial
information. Spatial-wise attention is designed to encode the
consistent density change as well as the global and local
density distribution regularity. Also to extract the contextual
information and capture the change in density distribution. To
enforce the learning of these features we adopted the spatial-
wise attention to cascaded spatial-wise attention presented in
Figure 1. The proposed architecture is light compared with the
other architecture as well as easy to implement.

A. channel-wise attention

A channel-wise attention module is a channel-based at-
tention module for fully convolutional neural networks. The
purpose of the channel is to extract the important features of
the input image with a feature detector that corresponds to
each channel in the feature map. The spatial dimension of the
input function map was compressed to measure the channel
attention efficiently. As shown in Fig. 1, First, by using average
pooling and max pooling operations, space information of a
map was aggregated and this generated two different spatial
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TABLE II
THE PERFORMANCE OF EACH METHOD ON THE EXISTING IMAGE AND
VIDEO SALIENCY DETECTION DATASET. THE BOLD AND UNDERLINE

FONTS RESPECTIVELY REPRESENT THE FIRST AND SECOND PLACE

DAVIS FBMS
Method F-measure MAE F-measure MAE
Tang et al. [5] 0.834 0.041 0.812 0.087
STA-Net [6] 0.883 0.025 - -
3DCNNX-shape [11] 0.815 0.050 0.823 0.085
Cong et al. [13] 0.683 0.094 - -
ConvLSTM [29] 0.817 0.024 0.797 0.063
Conv2DNet [30] 0.830 0.029 - -
DCB [33] 0.891 0.021 0.873 0.037
Ours 0.901 0.020 0.847 0.032

TABLE III
MAE RESULTS OF EACH METHOD ON DUT-OMTON, DUTS, AND

ECSSD DATASETS. THE BOLD AND UNDERLINE FONTS RESPECTIVELY
REPRESENT THE FIRST AND SECOND PLACE

Method DUT-OMRON DUTS ECSSD
Zhao et al. [23] 0.0414 - 0.0405
Ours 0.0341 0.0871 0.0391

context descriptors: respectively that indicate average pooled
features and max pooled characteristics. Both descriptors are
then sent to a shared network to create our attention channel
map.

B. Spatial-wise Attention

A Spatial-wise Attention Module is a spatial attention
module for fully conventional neural networks. It produces
a spatial care map by the use of the inter-space function
relationship. Unlike the attention of the channel, the focus of
spatial attention is where an information component comple-
ments the attention of the channel. We first apply the average
pooling and max pooling operations along the channel axis
and concatenate them to produce an effective characteristic
descriptor for calculating spatial attention.

IV. EXPERIMENTAL RESULTS

In order to evaluate the obtained results using the proposed
methods we used MAE and F-measure metrics. These results
are compared with the existing works and presented in Table
II and III which contains the results of four known datasets
including DAVIS for image salient object detection and FBMS
for video salient object detection.

A. Evaluation Metrics

To evaluate the performance of the proposed model we use
the mean absolute error (MAE), which is defined as:

MAE =
1

N

N∑
i=1

|zi − zgti | (1)

Where N is the number of images used for testing, zgti
denotes the real scene, and zi represents the obtained results.
While MAE indicates the accuracy of the salient detection.

(a) DAVIS

(b) DUT-OMRON

Fig. 2. The obtained results using the proposed method on DAVIS and DUT-
OMRON datasets. First row: Original image. Second row: ground truth. Third
row: obtained result using the proposed method.

B. Quantitative Comparison

In order to evaluate the proposed method and compare it
with the existing techniques we used MAE and F-measure
as evaluation metrics. For that, II, III provide the obtained
results on five datasets including image and video salient
object detection datasets. From the table which represents
the obtained results on image salient object detection datasets
including DAVIS and FBMS, we can find that the proposed
method, as well as the state-of-the-art methods, succeed to
achieve good results. On the DAVIS dataset, which is the
most used dataset for evaluating salient object detection from
images, the proposed method achieved the best results in terms
of MAE and F-measure metrics followed by DCB [33] with
a difference of 1%. While the obtained results using the other
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Fig. 3. video silent detection On FBMS dataset.

methods are close including Tang et al. [5], STA-Net [6],
3DCNNX-shape [11], ConvLSTM [29], and Conv2DNet [30].

For the FBMS dataset which is a video salient object
detection dataset, the proposed method reached the best MAE
metric value. The obtained results approve that the use of
channel and spatial analysis can help in better saliency de-
tection. Compared with the state-of-the-art methods, we can
see that the proposed method and DCB [33] method provide
better results in terms of F-measure and MAE metrics, with
a difference of 3% for F-measure. While the other method as
well obtains convincing results close to the proposed method
results. Also, the reached values are better for images than the
obtained results on videos. This is true regarding the presented
results using MAE metric on other datasets presented in Table
III. Because the proposed methods used different datasets
to evaluate their methods for video saliency detection, we
compare the proposed method with only one method [23].

C. Qualitative Comparison

In order to demonstrate the obtained results using MAE
metric, we present the qualitative results using the visualiza-
tion of some simple from each dataset. The visualization of
the obtained results for some datasets is illustrated in Figures 2
and 3. From the figures, we can find that the generated images
using the proposed method are of high quality and similar to
the ground truth. Also, even for objects with different scales
that makes the founding of a pattern difficult as well as the
learning of the pattern. In addition, with the use of channel
features, we obtained effective detection even while the object
in a complex scene or the color of the object is similar to the
background.

V. CONCLUSION

In this paper, a deep learning model on salient object de-
tection was proposed. The paper focuses on learning channel-
wise Spatiotemporal representations for video salient object
detection. Local feature extraction was developed using VGG
backbone. During the training process, the VGG backbone
learns the mutual and discriminator feature representations.
Both Spatial-wise attention and channel-wise attention mod-
ules were used to extract the important features of an image
and to produce effective characteristics in order to calculate
spatial attention. The results of the deep learning model
successfully fulfilled the aim of this paper and proved that
the model was able to detect the most important object and
can be further used in complex cases.
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Abstract—360-degree images, also known as panoramic, have
become increasingly popular in the field of Extended Reality
(XR). They offer an immersive experience to users, allowing
them to explore images in a more engaging and dynamic
manner. However, the visual quality associated with 360 images
in XR can vary greatly depending on factors, such as image
resolution with crisp details and vibrant colors. Thus, complex
camera systems are required to shoot 360-degree environments.
Generative adversarial networks (GANs), which have already
been successfully applied to out-painting tasks and for the
generation of masked regions in images, have the potential to
solve the need for complex infrastructures. As such, from only
a small RGB crop, the full environment could be generated.
However, traditional GANs can fail to blend the input crop
with the generated extrapolated region by introducing sharp
vertical edges that disrupt the overall visual coherence. Another
challenge in generating 360-degree images is the representation
and handling of the spherical geometry of the panorama. In
this work, we present 360-GAN, a cycle-consistent GAN model
to generate 360-degree omnidirectional images from small RGB
crops. Moreover, to maintain the spherical consistency of the
generated 360 panoramic images, our method uses Structural
Similarity Index (SSIM) as an added loss function. We evaluate
our approach through quantitative measurements, benchmarking
them against other state-of-the-art approaches. Our method
generates realistic results maintaining the spherical consistency
of the omnidirectional images with a Fréchet Inception Distance
(FID) of 46.59, nearly 6 points better than the most current
state-of-the-art methods.

Index Terms—Deep Generative Networks, Cycle-GAN, 360-
Degree image, SSIM.

I. INTRODUCTION

Omnidirectional 360 images, also known as spherical or
panoramic images, capture a complete 360-degree Field-of-
View (FoV). One of the key benefits of 360-degree images
is their ability to provide a sense of presence and immersion,
allowing viewers to feel like they are physically present in the
captured environment. Users can navigate through the image
by panning, tilting, and zooming to explore the entire scene
from different perspectives. This makes them ideal for creating
virtual tours, interactive experiences, and virtual reality (VR)
applications. Creating realistic panoramic images, however,
typically requires specialized cameras, multiple image stitch-
ing [1] [2], and post-processing techniques.

As humans, our perception of the visual world is not solely
determined by the specific FoV of our eyes. When we look at
a scene, our brain combines the information from our eyes
with prior knowledge and experience to construct a more
comprehensive understanding of the environment. Our visual
system is constantly making predictions and filling in missing
information based on contextual cues, past experiences, and
learned expectations. This process is known as perceptual
completion or ”filling in”. For example, a person standing
in a room with eyes focused on a particular object, can still
perceive the surrounding environment and have a sense of
what is outside our direct FoV. This is because our brain
is using visual cues and context to extrapolate and imag-
ine the rest of the scene. It takes into account factors like
object continuity, perspective, and spatial layout to generate
a coherent representation of the environment. As a regular
camera lens has a FoV of 72 degrees, the question is if we,
as humans, can somehow imagine the remaining part of the
scene by predictions. Will it be possible for an intelligent
system to generate a 360-degree image from a small RGB
crop? While generating a complete 360-degree image from
a small RGB crop is challenging, with the recent immense
progress of computer vision and Artificial Intelligence (AI),
mimicking human imaginary predictions becomes more of a
reality. Image out-painting, or extrapolating the content outside
the regular FoV of an image, allows a small crop RGB image
(i.e. the FoV), to generate the full 360-degree view. In this
paper, we have introduced a method based on Deep Generative
Networks for 360-degree FoV extrapolation.

For several decades, the generation of photorealistic images
using traditional image processing techniques [3] [4] has
been a complex and time-consuming endeavor, often requiring
painstaking manual adjustments and intricate algorithms to
mimic the intricacies of real-world scenes. Recently, Deep
Generative Networks [5] [6] has evolved with promising
results but poses challenges when it comes to extrapolating the
FoV for 360-degree images as it is designed to operate on pla-
nar grids. Maintaining spatial continuity across the generated
images is vital for a realistic experience. Since neighboring
regions in a 360-degree image are spatially connected, any
inconsistencies or artifacts between these regions can disrupt

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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the immersive effect.
The purpose of this paper is to provide a model tackling

both the blurriness and the spherical inconsistency. Herein, we
present 360-GAN, a cycle-GAN [7]-based model, where the
two GANs tend to perform domain adaptation. As described
in Figure 1, the first GAN generates 360-degree images from
small RGB crops and the second GAN model generates small
RGB crops from 360-degree images. Both of the models have
individual adversarial losses with cycle consistency loss. This
procedure aims to reduce the blurriness of the output 360-
degree image. Moreover, to maintain spherical consistency,
SSIM is used as a new loss function. We compare our method
with state-of-the-art algorithms, where 360-GAN outperforms
in all cases both quantitatively and qualitatively, by generating
360-degree images.

In the following sections, we have gone through the different
state-of-the-art methods for 360-degree FoV extrapolation,
their limitations, and how the research has progressed over
the past years. In the methodology section, we have discussed
cycle-GAN [7] for panoramic images and how it’s modified
into 360-GAN with the added SSIM loss to maintain the
spherical consistency of the generated 360-degree images. In
the final section, we benchmarked our 360-GAN method with
state-of-the-art methods using objective metrics. We show that
our 360-GAN method can extrapolate the FoV for 360-degree
image completion better than other methods.

II. RELATED WORKS

In this section, we have discussed various state-of-the-art
360-degree image synthesis methods and how different algo-
rithms evolved over the past years. It contains the advancement
of different methods starting from the planar image synthesis
to in-painting algorithms and finally out-painting methods for
360-degree image generation.

A. Planar image synthesis
Earlier, different texture synthesis methods [3] [4] were used

by extending the FoV of the image with the specific textures.
Texture synthesis involves generating new textures that are
visually similar to a given input texture. It can be used to
create larger textures from a smaller sample or to generate
entirely new textures based on a given style or set of exemplar
textures. Texture synthesis techniques often utilize statistical
models, such as Markov Random Fields (MRF) [8], to capture
the characteristics of the input texture and generate coherent
and visually plausible results. Recently, Generative Adversarial
Networks (GANs) showed promising results [5] [9] [10] [11]
[6] and have emerged as a method of choice. However, these
methods consider the image scene to be planar, which is not
the case for a realistic scene. We consider a scene to be
spherical which means the edges of the planar representation
will be merging perfectly when represented as a 360-degree
view.

B. In-painting
In-painting techniques aim to fill in missing or damaged

parts of an image. These methods use information from the

surrounding areas to estimate the content that should be
present in the missing regions. Diffusion-based in-painting
algorithms [12] use partial differential equations to propagate
information from the surrounding pixels into the missing
region. These methods iteratively estimate the missing values
based on the values of neighboring pixels, gradually filling
in the in-painted area. GAN-based methods like CoModGAN
[13] have been proposed for in-painting, which involves
training a generator network to fill in the missing pixels
inside an image, while the discriminator network evaluates
the realism of the generated images and provides feedback to
the generator to improve its output. For instance, CoModGAN
[13] generated impressive results for image in-painting as the
missing regions are constrained within the boundaries of the
input image, providing a clear target for the generator to fill
in.

C. FoV Extrapolation

Out-painting, which involves generating new content be-
yond the boundaries of an input image, is more challenging
as it aims at filling in missing regions that do not exist in
the original image, requiring the algorithm to create plausible
and visually coherent content that seamlessly extends the
scene beyond its initial confines. Several GAN methods have
been proposed based on Pix2pix [14], which requires cropped
images and original images paired for training. A DCGAN-
based method [15] generates FoV extrapolation with hazy
results. Im2Pano3D [16] predicts a comprehensive 360-degree
segmentation map from a regular image, providing valuable
clues about the surrounding content captured by the camera.
Li et al. [17] utilizes a VAE-GAN (Variational Autoencoder
GAN) structure that generates edges and edge transformation
for FoV extrapolation. Akimoto et al. [18] proposed a method
that is based on a two-stage conditional GAN to generate
360-degree panoramic images. Recently, Akimoto et al. [19]
have used a transformer-based architecture to predict 360-
degree FoV extrapolation for generating 3DCG backgrounds.
Based on the CoModGAN [13] architecture, ImmerseGAN
[20] generates plausible results for image out-painting as
the generator needs to generate new content that is visually
coherent and semantically meaningful while maintaining con-
sistency with the existing content in the input image. However,
the generator has little to no contextual information beyond
the input image boundaries to guide the generation process.
This lack of context makes it difficult to generate realistic
and visually coherent content that extends beyond the input
image boundaries. Moreover, low-resolution images [14] with
pixelation or blurriness can reduce the visual clarity that can
negatively impact the sense of presence and engagement.

III. METHOD

This section describes our methodology on how we have
modified the cycle-GAN model [7] to generate realistic, spher-
ically consistent 360-degree images. We have also added a new
loss function based on SSIM.
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Fig. 1. Our presented method to extrapolate 360-degree Field-of-View using 360-GAN based on cycle-GAN architecture.

A. Cycle-GAN for panoramic images

Our work builds on the cycle-GAN [7] architecture. It
typically consists of two generator networks (G1, G2), and two
discriminator networks (D1, D2), one for each domain. It in-
cludes two mapping functions G1 : X → Y and G2 : Y → X .
The generator networks learn to generate fake images, while
the discriminator networks learn to distinguish between fake
and real images. The generator and discriminator networks are
trained in an adversarial manner, where the generator tries to
generate realistic images to fool the discriminator, while the
discriminator tries to correctly classify fake and real images.
So the generator and the discriminator are trained iteratively
in a two-player minimax game setup. The adversarial loss
L (G1, D1) is defined as:

L (G1, D1) =min
ΦG

max
ΦD

{Ey [logD1(y)]

+Ex [log (1−D1 (G1(x)))]}
(1)

where, ΦG and ΦD are the respective parameters of G1 and
D1, and x ∈ X and y ∈ Y shows the unpaired training data
in both domains. A similar adversarial loss is defined for the
reverse mapping L (G2, D2).

The training data in Cycle-GAN is unpaired where X
represents the small RGB crops and Y represents the 360-
degree images. The key idea behind Cycle-GAN is the use of
cycle consistency, which is achieved by training the generator
networks to not only generate images from X to Y but also to
be able to reverse the translation and reconstruct the original
image. This is done by introducing cycle consistency loss,

which penalizes the difference between the original image and
the image reconstructed after going through both generator
networks in a cycle. Thus the training process of Cycle-GAN
involves a cycle-consistency loss term in addition to the stan-
dard adversarial loss. The cycle consistency loss encourages
the generators to produce images that are consistent when
translated back and forth between the two domains X and Y,
ensuring that the generated images are plausible and maintain
the original content.

L (G1, G2, D1, D2) = L (G1, D1)

+ L (G2, D2) + γLcycle (G1, G2)
(2)

where,

Lcycle (G1, G2) = ∥G2 (G1(x))− x∥1
+ ∥G1 (G2(y))− y∥1

(3)

is the cycle-consistency loss and γ is the cycle-loss param-
eter.

B. 360-GAN

Figure 1 presents our approach. We introduce an end-to-end
trainable pipeline, meticulously designed to cater to the task
of a 360-degree FoV extrapolation that generates top-notch
panoramas from a single RGB crop image with limited FoV.
Based on the cycle-GAN architecture, we have built our 360-
GAN with the addition of SSIM loss. It consists of two GANs:
one to learn the features from small RGB crops to 360-degree
images (forward consistency), and the other to learn the fea-
tures from 360-degree images to small RGB crops (backward
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Fig. 2. Qualitative Field-of-View extrapolation results.

consistency) till the point they reach cycle consistency. The
SSIM [21] is a widely used image quality assessment metric
that measures the structural similarity between two images.
Mathematically, the SSIM loss can be defined as:

LSSIM = 1− SSIM(I1, I2) (4)

where SSIM is the Structural Similarity Index between the
reference image (I1) and the distorted image (I2). To maintain
the spherical consistency of the generated 360-degree images,
we have added the SSIM loss (LSSIMG1

) between 10 edge
pixels of the left (Ileft) and right (Iright) sides with the whole
image height of the generated panoramic image (Generator
G1). This added loss ensures the blending of the right and
left edge pixels of the generated 360-degree image, hence,
removing discontinuities. It encourages the generator model
(G1) to produce 360-degree images with no discontinuities at
the edges.

The total loss is then calculated as:

LT OT AL = L (G1, D1) + L (G2, D2)

+ γLcycle (G1, G2) + λLSSIMG1

(5)

where λ is the SSIM Loss parameter.
As shown in Figure 1, the Generator networks (G1, G2) are

based on the U-Net [22] architecture. Anisotropic upsampling
artifacts can occur when there is a significant difference in the
scale or resolution between different dimensions of the image.
To mitigate anisotropic upsampling artifacts while mapping the
output to the equirectangular representation, based on [20], we
made adjustments to the U-Net architecture to ensure a 2:1

aspect ratio. The skip connections, which help in preserving
fine-grained details during the upsampling process, are de-
signed to maintain the desired aspect ratio. This modification
helps maintain consistent proportions and prevents distortions
that may occur during upsampling, resulting in improved
visual fidelity in the final equirectangular representation. The
Discriminator networks (D1, D2) are based on the PatchGAN
architecture [23] which outputs a grid of scalar values, where
each scalar value corresponds to a small patch of the input
image. The discriminator’s job is to distinguish between the
real output image and the generated output image.

IV. EXPERIMENTS

This section provides a description of the dataset used for
the evaluation of 360-GAN and an analysis of the results.

A. Datasets and Training

Our 360-GAN model was trained on a dataset composed of
the 360-Indoor [24] and Matterport3D [25] datasets. While the
360-Indoor dataset consists of a total of 3,335 panoramic RGB
images, the Matterport3D dataset consists of 10,800 indoor
panoramic images. The total dataset is split into 80% train,
10% validation, and 10% test subsets. While training, random
crops are computed with FoVs between 70°and 80°to ensure
as diverse a set as possible.

To enhance the diversity of our dataset, we implemented
data augmentation techniques including random scaling and
translations, which allows for variations of up to 15% in
size compared to the original image. Additionally, we applied
random adjustments to the exposure and saturation of the
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image, with a maximum factor of 1.2. These techniques
introduce variability and augment the training data, enhancing
the model’s ability to generalize and learn robust features from
different image variations. We trained our 360-GAN model for
200 epochs with a decaying learning rate starting with 0.0002.

B. Results

To provide realistic benchmarks, we selected the state-
of-the-art methods pix2pixHD [9] and ImmerseGAN [20].
Therefore, we trained both pix2pixHD [9] and ImmerseGAN
(unguided) [20] on our dataset and tested them under the
same conditions as for 360-GAN. The FoV of the RGB crops
ranges between 70°and 80°which is also the FoV of a normal
camera lens. Qualitative results are presented in Figure 2.
They show that pix2pixHD [9] generates bad quality results as
the GAN model fails into mode collapse. ImmerseGAN [20],
which is based on CoModGAN [13], generates results with
discontinuities. Our method, 360-GAN generates realistic om-
nidirectional images with plausible environments maintaining
the spherical consistency. As shown in Figure 2, the generated
360-degree images using our method 360-GAN ensures color
accuracy, sharpness, texture, and overall visual appearance.

Moreover, to include a more quantitative analysis, we
calculated the Fréchet Inception Distance (FID) [26] score
for each method as shown in Table I. We have considered
FID as the objective metric over peak signal-to-noise ratio
(PSNR). PSNR is primarily designed to measure the pixel-
level similarity between two images, emphasizing the mean
squared error (MSE) between them. However, perceptual
quality is not solely determined by pixel-level differences.
Human perception of image quality takes into account factors
like color distribution, texture, and overall visual appearance,
which are not adequately captured by PSNR. FID, on the other
hand, is based on feature representations extracted by a pre-
trained deep neural network, which better aligns with human
perception. 360-degree images are high-dimensional data due
to their large spatial extent. PSNR, being a pixel-wise metric,
treats all pixels equally and does not consider the spatial
arrangement or structural information in the image. FID,
utilizes features extracted from a deep network, and captures
higher-level semantics and spatial relationships, making it
more suitable for evaluating the quality of complex 360-degree
images.

TABLE I
QUANTITATIVE ANALYSIS ON THE TEST SET.

Method FID
pix2pixHD [9] 143.27
ImmerseGAN [20] 52.93
360-GAN (ours) 46.59

FID is a measure of the similarity between the distribution
of real images and the distribution of generated images, where
lower values indicate better similarity. As mentioned in [18],
the PSNR does not indicate the performance of different
deep generative models as our main goal is completion and

not the restoration of the original images. The FID score
is computed by first passing a set of real images and a
set of generated images through a pre-trained Inception-v3
neural network [27] to obtain feature representations. Then,
the mean and covariance of these feature representations are
calculated for both sets of images, and the distance between
these statistics is measured using the Fréchet distance. The
FID score of pix2pixHD [9] is the worst among the three
methods tested. We assume that the FID score of the state-of-
the-art method ImmerseGAN [20] is not that good compared
to the original paper as we have trained on our dataset till the
point it starts over-fitting. Based on the quantitative analysis,
our method 360-GAN outperforms the state-of-the-art method
ImmerseGAN [20].

V. CONCLUSION

The contributions of this paper can be outlined as follows.
To begin with, we introduce a novel method 360-GAN based
on the cycle-GAN architecture to extend the FoV of a camera
to a complete 360-degree panorama with SSIM as an added
loss function. This method effectively controls the appearance
of the extrapolated content, resulting in spherical consistent
omnidirectional images that surpass the current state-of-the-
art in both visual quality and the standard FID metric. We
are confident that the results of our method 360-GAN can
be improved if trained on a much larger dataset as the cycle-
GAN model can learn more domain knowledge. The third row
of Figure 2 shows that all of the tested methods produced a
discontinuity for the overhead lights. We will investigate this
further by using a decaying SSIM loss function to remove the
discontinuities in the generated images. Moreover, our method
can be used to generate realistic 360-VR scenarios which
enhance the quality and user experience of omnidirectional
images, making them more immersive, visually appealing, and
interactive. In the future, we would like to perform some user-
based studies by conducting surveys where participants are
asked to rate the visual quality and realism of the generated
360-degree images.
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Abstract—To effectively manage and utilize the massive
amount of visual data generated by the surging number of
videos, decision-making systems must predict and reason about
future outcomes. This paper proposes a novel online approach for
video prediction that enables continual learning in the presence
of new data, as periodic training of neural networks may not
be practical. We utilize all predictions, including intermediate
computations obtained during the inference process, to improve
the performance of video prediction. To achieve this, we in-
corporate a weighting scheme in the loss that accounts for all
the predictions during the learning process. Additionally, we
leverage semantic segmentation to assess the performance of
extrapolated frames by focusing on the position of the objects in
the scene. Our approach stands out from state-of-the-art methods
as it uses intermediate predictions, which are available due to
the iterative nature of forecasting future frames. Our method
improves the offline counterpart for the same network by 1.45
dB for predicting five steps in the future.

Index Terms—Extrapolation, video prediction, online learning,
metric, segmentation

I. INTRODUCTION

The human capacity to forecast future events and adapt
present behavior accordingly is a well-established phe-
nomenon in cognitive psychology and behavioral sciences [1].
As such, expecting the same for systems is key for under-
standing about the world that surrounds us. The applications of
video prediction range from assisting in medical diagnosis [2],
for autonomous driving to help the car to anticipate and react
to potential hazards on the road [3] to low-latency video trans-
mission [4]. Being a self-supervised task, the understanding
only comes from the data itself, preventing the need for data
labeling efforts.

Online deep learning methods have been presented as a
way to scale with the stream of data [5]. It has been studied
more specifically in various fields of computed vision, from
classification [6] to semantic segmentation [7]. In the presented
work of Zhang et al. [8], the authors apply online learning
to video depth estimation that would normally require labeled
data for the network to be updated but they devise a technique
to be able to do so in a self-supervised way. Video prediction
networks also benefit from the online learning paradigm,
which encourage to present a novel methodology that can
apply to all such networks.

To enhance the accuracy of video prediction for distant fu-
ture sequences, we utilize intermediate frames in the prediction

process. These intermediate frames are saved and combined
with new ground truth images as they are received to update
the model based on a weighting of all predictions in the loss
computation. Overall, our method improves the performance
of video prediction, particularly for longer temporal horizons,
resulting in more accurate predictions of future frames in a
video sequence.

Furthermore, we present a method for evaluating video
prediction algorithms at the object level. We accomplish this
by borrowing from the field of semantic segmentation and
creating a pseudo label segmented image from the ground
truth, which we then compare to extrapolated frames. As a
result, we focus on the objects in the scenes and their locations
rather than the entire scene.

II. RELATED WORK

In the typical setup of evaluation of deep learning architec-
tures, the model weights are typically learned on the training
set, the hyperparameters are fine-tuned on the validation set,
and the pre-trained weights are used on the test set. This
is the batch-learning strategy, where the system learns the
model only once. Before being deployed, the model is pre-
trained offline, and afterward, it is frozen. Online learning
techniques differ in that they continuously update and improve
a model’s performance as new data becomes available. The
model is trained on a stream of data, with each new obser-
vation providing an opportunity for the model to learn and
adapt in real-time. Interest in online learning has emerged for
classification tasks [9], formally introduced in [10]. Existing
video extrapolation methods [11] only considered the batch
learning paradigm. Our target use case, on the other hand, has
a critical distinction that allows us to progress toward a more
effective framework. More precisely, for any image predicted
by the extrapolator, its ground truth (the actual image) will
arrive and allow a refinement of the neural network. This
idea naturally leads us toward the on-line learning paradigm.
The approach we propose in this paper is based on online
learning [12] and allows the system to learn the model on the
fly which means keeping learning even after being deployed
as new data arrives.

Since video prediction is a self-supervised task [13], there
is no need for human annotation as the information is already
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present in the data. Zhang et al. [8] apply online adapta-
tion to to consider the task of depth estimation as a self-
supervised task in a self-supervised manner not to require
depth data explicitly and adapt to evolving data streams.
Later, the concept was developed for online monocular depth
estimation [14]. Online learning has been shown to improve
streaming policies [15]. Our work is connected to these
studies as they employ video depth estimation in an online
environment, similar to our objective of developing video
extrapolation networks that function with online streams of
video sequences.

III. ONLINE VIDEO PREDICTION SCHEME

In certain applications, such as compensating for latency
through extrapolation [4], it is essential to have the ability
to make predictions at a specific horizon in the future. The
horizon h is defined as the number of frames we want to
predict in the future. As it is well known in the literature, the
larger h, the more difficult it is to get a reliable prediction. To
address the decrease in prediction accuracy when dealing with
large values of h, a frequently employed approach involves the
iterative application of the prediction network. This entails
making predictions for future frames within a shorter time
horizon, and subsequently using these predictions as input to
the prediction network to extrapolate frames farther away in
time [11]. This iteration process can be exploited in online
learning by defining a loss function that employs a weighted
mean of the errors of each intermediate prediction. In an
online setting, it means that as soon as a new frame from
the sequence arrives, multiple forward passes coming from all
approximations of the new images will occur.

Figure 1 presents the proposed scheme for online video
prediction. To predict the sequence stream ahead of h frames,
we start from the pre-trained weights resulting from the
training process. By storing past predictions of Îhn , i.e., the
predicted frames of the ground truth frame I at time step n
using horizon h, we use them later when the ground truth
arrives to update the prediction network. The input frames
from the video prediction network, namely the context frames,
can be either true (available) frames, or predicted frames from
the iterative process. At each time step, the video extrapolation
network F , which would be fixed in an offline learning
scenario, is updated. We denote as Fn the updated model at
time n. By following the depicted process, the extrapolated
frames for In can be obtained as follows (assuming as an
example that F takes 2 context frames as input):

Î1n = Fn−1(In−1, In−2) (1)

Î2n = Fn−2 (Fn−2(In−2, In−3), In−2) (2)

Î3n = Fn−3

(
Fn−3 (Fn−3(In−3, In−4), In−3) , Î

1
n−2

)
(3)

More in general, when we recursively re-circulate the last
predicted output back as input h times in order to predict h
steps in the future, frame n is predicted h times: at time n−1,
n−2, . . . , n−h. We can define a new overall loss L∗ that takes

time
n-3 n-2 n-1

horizon

Fig. 1: Prediction of 3 steps in the future. The vertical axis
represents how far we want to predict in the future and the
horizontal one represents the stream of data arriving. Ground
truth frames are depicted in gray and predicted frames in blue.
The ground truth frames allow to get the predicted sequence
3 steps in the future Î3n, Î3n+1, Î3n+2. All the intermediate
computed frames will be used to update the network as ground
truth arrives.

advantage on one hand of all these intermediate predictions,
and on the other of the availability ground truth frames:

L∗ =

h∑
i=1

λi L
(
Îin; In

)
, (4)

where λ refers to the weight assigned to each of the different
predictions. The loss L∗ is a weighted sum of all the per-
frame losses L

(
Îin; In

)
over the horizon h where L

(
Îin; In

)
is often a mean squared error, but other relevant loss metrics
can be used. At the arrival of new ground truth frame, the
network will update itself with the loss with the formulation
in Equation 4.

IV. SEMANTIC SEGMENTATION BASED METRIC

PSNR has been criticized for not being a good objective
fidelity metric [16]. Regardless, it is still widely popular and
used to compare different frames from videos. It relies on
every pixel of the reference frame and compares it to a
target frame. Using methods from the semantic segmentation
field [17], we may further verify the accuracy of the pixels at
the object level in the scene. Semantic segmentation involves
assigning per-pixel predictions of object categories to an
image, providing a comprehensive description of the scene
that includes information about the object category, location,
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Fig. 2: Semantic segmentation based metric for video predic-
tion.

and shape. By applying semantic segmentation to the images
in question, we can observe the positions of the objects and
confirm the observations made earlier. We elaborate on the
method to evaluate the extrapolation methods using semantic
segmentation. We demonstrate a method to evaluate the ex-
trapolation methods using a semantic segmentation on Figure 2
scheme. The received frames I are fed to a semantic segmenta-
tion network to generate pseudo labels (since the ground truth
is not provided) for segmentation Ĩseg , and compared to the
segmentation maps Îseg computed on the extrapolated images
Î . For this evaluation, we choose DeepLabv3+ [18] pre-trained
on Cityscapes, having Resnet-101 as backbone. The adopted
evaluation metric is the Intersection-Over-Union, denoted as
IoU: this is a method to quantify the overlap between the target
segmentation mask and our prediction segmentation output
over the union of both quantities.

V. EXPERIMENTS AND DISCUSSION

In the following experiments, we analyze the effect of the
proposed online video prediction technique and evaluate them
using common metrics and the segmentation-based metric
introduced in this work.

A. Datasets

We train the learning-based extrapolation methods, MC-
Net [19] and SDCNet [20] on the Caltech Pedestrian dataset
[21], collected from a vehicle driving through regular traffic in
an urban environment. The dataset consists of around 10 hours
of dashcam footage with 65 different video sequences captured
at 30 fps. We additionally use sequences from the Kitti [22]
and DriveSeg [23] manual scene for evaluation purposes which
are both datasets taken the same way as Caltech pedestrian
from a moving vehicle. We use the sequence #14 from Kitti
consisting of 320 frames and the first 500 frames of DriveSeg.
Regarding the optical flow-based method FlowNet2 [24], we
only make use of the pre-trained weights on MPI-Sintel which
is an optical flow data set derived from the film Sintel [25].

(a) Extrapolated frame with SDCNet

(b) Segmentation of the extrapolated frame

(c) Segmentation of the true image

Fig. 3: Segmentation outputs for predicting one step in the
future. Image taken from the Kitti dataset.

B. Choice of video prediction networks

As discussed in [26], video prediction methods can be
motion-based, pixel-based, or fusion-based. Motion-based
methods focus on the motion in the image which could be
done with the optical flow information. Pixel-based methods
generate the entirety of the pixels from scratch and finally,
fusion-based methods combine both motion and pixel-based
methods. We choose a technique from each class, starting with
FlowNet2 [24] for predicting optical flow. Combined with a
warping that moves the pixels according to the optical flow,
an estimate of the next image can be obtained. MCNet [19]
uses long short-term memory modules from image differences
to generate a new frame. SDCNet [20] uses both optical
flows and convolutional kernels from the pixels to generate
the extrapolated frame. We perform offline experiments that
correspond to having the weights of the neural network being
frozen at validation as well as online experiments on SDCNet,
with weights learning during validation.

We also include a simple frame-copy extrapolation, dubbed
CopyLast. This method just copies the last available frame.
Although it is not a real extrapolation method, it is often
used as a reference. In particular, for understanding the visual
quality of the prediction: if the predicted image is not better
than CopyLast, it means that we are introducing large artifacts.
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PSNR ↑ SSIM ↑ VMAF ↑
Approach h=1 h=3 h=5 h=1 h=3 h=5 h=1 h=3 h=5

CopyLast 21.25 18.87 17.96 0.50 0.42 0.40 16.12 9.33 8.05
MCNet 23.19 20.66 19.36 0.60 0.52 0.49 19.84 8.91 6.47

FlowNet2 + warp 24.92 21.44 20.03 0.73 0.53 0.48 32.55 10.89 7.04
SDCNet offline 25.38 23.18 22.06 0.76 0.68 0.65 39.59 24.51 18.37

SDCNet online (ours) 26.53 24.07 22.73 0.83 0.75 0.71 51.27 32.86 24.55

(a) Quantitative results on Kitti scene 014

PSNR ↑ SSIM ↑ VMAF ↑
Approach h=1 h=3 h=5 h=1 h=3 h=5 h=1 h=3 h=5

CopyLast 27.65 23.64 22.21 0.72 0.54 0.45 47.34 29.22 22.49
MCNet 28.84 25.20 22.68 0.89 0.74 0.61 61.05 40.78 27.70

FlowNet2 + warp 31.82 27.00 24.72 0.92 0.79 0.65 71.77 42.26 26.86
SDCNet offline 34.23 29.93 28.21 0.95 0.88 0.83 80.44 56.91 45.23

SDCNet online (ours) 35.89 31.71 29.66 0.98 0.93 0.89 87.58 69.48 57.64

(b) Quantitative results on DriveSeg

TABLE I: Comparison of the proposed online method with other extrapolation methods

C. Experimental results

In Table I we observe the PSNR in the YCbCr color
space [27], SSIM [28], and VMAF [29], as they are widely
used objective metrics. The reference extrapolated video is
compared to the original input sequences. CopyLast serves
as a simple baseline that uses the last available frame and
corresponds to not anticipating the future while FlowNet2
combined with a warping allows predicting the future frames.
For every extrapolation horizon, the weights are reinitialized
from the pre-trained weights. The weights assigned to the λ
are chosen so that λi = 1∀i, signifying that each of the parts
of the sum given in the equation 4 has equal importance. The
online proposed method applied to SDCNet outperforms the
same network in offline mode by 0.89 dB in Kitti and 1.78
dB in DriveSeg at horizon h = 3, meaning predicting three
steps in the future, which results in a latency compensation of
100 ms.

D. Ablation study

We perform multiple experiments to validate our proposed
online approach for video prediction. To do so, we compare
our proposed method, which we call “Uniform” due to the
equal importance to every predictions. “First only” corre-
sponds to considering the first prediction only and “Last only”
only the last prediction. Table II shows that our approach out-
performs the competing approaches, and proves the proposed
approach of considering every prediction is beneficial to the
network. At h = 1, the methods behave the same due to
having a single weighting term, therefore we do not report
these results as these can be found in Table I.

E. Discussion about segmentation

In Table III, we report the intersection over union (IoU) of
the class “car”, which is predominant in the chosen sequences.
In the Kitti scene, the IoU seems to follow the same trend

PSNR ↑
Weighting λi h=2 h=3 h=4 h=5

First only 24.95 23.99 23.27 22.66
Last Only 24.91 23.89 23.09 22.46
Uniform 25.05 24.07 23.37 22.73

(a) Kitti scene

PSNR ↑
Weighting λi h=2 h=3 h=4 h=5

First only 33.24 31.59 30.46 29.57
Last Only 33.20 31.38 30.12 29.21
Uniform 33.32 31.71 30.58 29.66

(b) DriveSeg

TABLE II: Ablation study on the weighting in the online
scheme

as the PSNR and demonstrates that the online adaptation
brings an increase in performance. Concerning DriveSeg, the
IoU from both methods are very close, which contradicts the
PSNR results of the online outperforming CopyLast. Upon
further examination, it was discovered that in the Kitti dataset,
the moving cars are spaced further apart from each other
compared to the DriveSeg dataset where the cars are closely
grouped together. The image in Figure 3 displays an issue
caused by extrapolation at the back of the car, resulting in the
segmentation network incorrectly categorizing this artifact as
a car.

VI. CONCLUSION

This paper introduces an online learning algorithm for video
prediction. We exploit every prediction to improve the video
extrapolation network and not just the resulting frames of
the desired horizon. This comes at the price of additional
complexity by making use of intermediate and unused pre-
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IoU car ↑
Approach h=1 h=2 h=3 h=4 h=5

CopyLast 0.50 0.29 0.19 0.16 0.17
MCNet 0.38 0.20 0.14 0.09 0.18

FlowNet2 + warp 0.70 0.53 0.40 0.30 0.22
SDCNet offline 0.69 0.56 0.45 0.34 0.23

Ours 0.72 0.58 0.55 0.48 0.29

(a) IoU for Kitti scene 14

IoU car ↑
Approach h=1 h=2 h=3 h=4 h=5

CopyLast 0.87 0.83 0.80 0.78 0.75
MCNet 0.80 0.72 0.67 0.64 0.58

FlowNet2 + warp 0.86 0.83 0.79 0.76 0.73
SDCNet offline 0.86 0.80 0.73 0.73 0.69

Ours 0.88 0.84 0.81 0.78 0.76

(b) IoU for DriveSeg

TABLE III: Intersection over Union comparison between
CopyLast and extrapolation methods over Kitti and DriveSeg
for the car class.

dicted frames but with an increase in quality as demonstrated
by the experiments. The segmentation-oriented quality metric
focusing on the object rather than every pixel also seems
promising and may stimulate further work towards enforcing
shape consistency of objects in difficult environments.
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Abstract—Recent studies have discovered that Deep Learning
(DL) models are vulnerable to adversarial attacks in image classi-
fication tasks. While most studies have focused on DL models for
image classification, only a few works have addressed this issue
in the context of Image Quality Assessment (IQA). This paper
investigates the robustness of different Convolutional Neural
Network (CNN) models against adversarial attacks when used for
an IQA task. We propose an adaptation of state-of-the-art image
classification attacks in both targeted and untargeted modes for
an IQA regression task. We also analyze the correlation between
the perturbation’s visibility and the attack’s success. Our exper-
imental results show that DL-based IQA methods are vulnerable
to such attacks, with a significant decrease in correlation scores.
Consequently, the development of countermeasures against such
attacks is essential for improving the reliability and accuracy of
DL-based IQA models. To support the principle of reproducible
research and fair comparison, we make the codes publicly
available on https://github.com/hbrachemi/IQA AttacksSurvey.

Index Terms—Blind image quality assessment, Adversarial at-
tacks, Robustness, Deep learning, Convolutional neural networks.

I. INTRODUCTION

The impressive development of Deep Learning (DL) and its
deployment in different fields introduced major progress in the
automation process of many human-related tasks. For example,
it has gained significant popularity among the Image Quality
Assessment (IQA) community and has become the standard
used approach.

On the other hand, Szegedy et al. [1] were the first to
reveal the vulnerability of DL to adversarial attacks in the
context of image classification. They showed that adding
small yet carefully crafted perturbations to the input image
can lead to its misclassification. This gave rise to serious
security vulnerabilities that could be exploited for malicious
purposes. Being no exception, IQA models can also fall
victim to these adversarial attacks. The operational spectrum
of attacks on IQA metrics ranges from inconvenience to
end users to life-threatening critical risks. For instance, in
content-sharing applications such as social media, tricking
a metric into predicting high-quality scores for low-quality
visual content can negatively impact the Quality of Experience
(QoE) of end users. Conversely, predicting poor quality scores

This work is fully funded by both Région Bretagne (Brittany region),
France, and Direction Générale de l’Armement (DGA)

for good-quality images can trigger enhancement mechanisms
and increase both energy consumption and latency, leading
to reduced engagement, especially on streaming platforms.
A biased quality assessment of camera feeds subsequently
used by other applications could also significantly affect the
reliability of the entire pipeline. The most striking example
is video surveillance, where a poor quality prediction could
result in storing unclear footage. Finally, an IQA metric that
fails to detect medical image artifacts can lead to misdiagnosis
and compromise the patient’s safety and well-being.

There are different types of attacks, depending on the
intentions and motivations of the adversary. They can thus
be divided into different categories according to [2]: 1) their
nature (poisoning and evasion attacks), and 2) the attacker’s
objective (targeted and untargeted attacks). Poisoning attacks
involve poisoning or altering the data used during the training
of the model. In contrast, evasion attacks aim to perturb the
used samples during inference, making them mispredicted
with high confidence. On the other hand, the main objective
of a targeted attack is to produce a specific behavior, while
an untargeted attack aims to decrease the performance and
accuracy of the model.

In the context of IQA, we find it more interesting to investi-
gate the robustness of current state-of-the-art solutions against
evasion attacks. In a first-case scenario, the adversary can carry
out a targeted attack by tricking the metric into predicting a
specific score that does not reflect the true quality. The other
scenario involves launching an untargeted attack to reduce the
metric’s performance. In other words, the adversary’s objective
is to make the IQA metric predict a good quality score for poor
quality images and vice versa.

Although a few studies [3]–[5] tackled adversarial attacks
for IQA models, these works assume the presence of a
third party that verifies the integrity of images before their
assessment by the IQA metric. Specifically, a human third
party has to check whether the images have been changed or
not. This assumption is both time-consuming and impractical.
It is also quite intuitive that, in this particular context, the
visibility of the adversarial perturbation is directly linked to
the performance of the attack. Moreover, existing works focus
more on launching the attack in a targeted fashion [3], [4],
while less attention has been given to untargeted attacks [5].

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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In this paper, we explore the robustness of various
Convolutional Neural Network (CNN) backbones against ad-
versarial attacks when used in an IQA regression task. Our
primary objective is to adapt existing state-of-the-art image
classification attacks to IQA models in both targeted and
untargeted modes. Then, we aim to examine any possible
correlation between the perturbation visibility and the attack
effectiveness.

The rest of this paper is organized as follows. Section II
provides an overview of Blind Image Quality Assessment
(BIQA) metrics, adversarial attacks, and adversarial attacks
for BIQA metrics. Next, Section III formulates the problem
and describes the proposed framework. Our experiments are
detailed and analyzed in Section IV. Finally, Section V con-
cludes the paper.

II. RELATED WORK

A. Blind Image Quality Assessment

IQA has been an active research field, and over the years,
a multitude of IQA metrics have been proposed. They range
from distortion-specific and Natural Scene Statistics (NSS)-
based metrics to Machine Learning (ML)-based metrics. How-
ever, with the introduction of CNN-based models, the per-
formance gap has considerably widened. Many widely used
CNN architectures have been initially proposed for the image
classification task. However, a desirable property of deep
models enables their fine-tuning on similar tasks, such as IQA
[6]. Some of the first works that introduced CNNs to the IQA
are [7], [8], and since then, many works have been inspired by
this concept [9], [10]. Consequently, recent successful models
rely on transfer learning and yield outstanding performance
on publicly available IQA datasets [10]–[12]. These solutions
mainly differ in the choice of the CNN backbone and the
aggregation of their output features.

B. Adversarial Attacks

Ever since [1] discovered the possibility of fooling a deep
classification model by carefully crafting an Adversarial Ex-
ample (AE), the attention of many researchers has shifted
toward the security aspect of deep neural networks. In [13], the
authors demonstrated how easy it is to manipulate the model to
misclassify an input image with high confidence. This work
has been followed by a wave of studies, where researchers
have demonstrated that the attack can be transferred between
two DL architectures [14], and led to a rapid emergence of
various competitive adversarial attacks [15]–[17].The adver-
sarial attack is often formulated as an optimization problem.
The objective is to minimize or maximize a loss function,
i.e., the distance between the predicted and the ground truth
or the targeted score, with certain constraints on the crafted
AEs, depending on the context. Several popular methods
used for image classification include the Limited Memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [1], Fast Gra-
dient Method (FGM) [15], Carlini and Wagner (C&W) [16],
Zeroth Order Optimization (ZOO) [17], and Spatial Transfor-
mation attack [18].

C. Adversarial Attacks on BIQA Models

A few works have investigated the impact of these vulnera-
bilities in the context of IQA [3]–[5]. For instance, in [3], the
authors studied a targeted attack to maximize the predicted
image quality score and its transferability inter-model. Their
main objective was to decrease the QoE by deceiving the
quality assessment mechanism into predicting high-quality
scores for low-quality images using imperceptible adversarial
perturbations. They relied on a gradient-based attack and then
used a spatial activity map to reduce its visibility. The reported
results showed that increasing the predicted quality score of a
given image is possible without improving its actual quality.
In the same way, Shumitskaya et al. [4] proposed an Universal
Perturbation Attack (UAP) to generate a general perturbation
for a given BIQA model. They considered the UAP as a non-
frozen variable updated during training. Their study demon-
strated the existence of a specific gradient of the loss function
with respect to the training set images for a given model
whose direction leads to an augmentation of the predicted
quality score. Then, they proposed to use a Contrast Sensitivity
Function (CSF) as a weighting map to reduce the visibility
of the crafted perturbation. Zhan et al. [5] reformulated the
problem in a Lagrangian fashion by swapping the constraint
and the objective. Their primary purpose was to maximize
the gap between the predicted quality scores on the clean and
perturbed images under a constraint of non-visibility of the
perturbations. Their main contribution consists in estimating
the distance between the clean image and the AE using a Full
Reference (FR) metric to mimic the Just Noticeable Difference
(JND) aspect of the Human Visual System (HVS). These
works revealed the vulnerability of different BIQA metrics,
including a few CNN-based architectures. However, no further
investigations regarding the robustness of different CNN-based
architectures have been conducted. Moreover, most proposed
studies focus on achieving non-perceptible perturbations for
targeted attacks. To the best of our knowledge, there has been
little to no investigation into untargeted attacks on CNN-based
IQA models, highlighting the need for further research in this
direction.

III. PROPOSED FRAMEWORK

In this section, we present a framework that adapts efficient
and widely-used adversarial attacks in the field of image
classification to the context of the IQA task in both targeted
and untargeted scenarios. Then, we evaluate how well the IQA
model can withstand these attacks and maintain its ability
to predict image quality scores accurately. We intentionally
do not set any constraints on the perceptibility of the added
perturbation during the generation of the AE. Relaxing the
perceptibility constraint allows us to investigate the potential
correlation between the success score of the adversarial attack
and its perceptibility in the IQA context.

The objective of an adversarial attack is to craft an AE xadv

that satisfies Mw(xadv) = yadv , where Mw is the IQA model
parameterized by the vector of weights w, and yadv is a score
that differs from both the ground truth score ymos and the
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Fig. 1: Overview of the proposed framework.

predicted score on the clean image ypred. The objective of the
attack may vary depending on the context and the attacker’s
goals (availability of ground truth score, targeted or untargeted,
etc.).

Our proposed framework is illustrated in Fig. 1, where the
adversary uses the model’s loss gradients related to the image
to generate the AE. Moreover, we consider in this work both
attack scenarios: targeted and untargeted.

In the targeted scenario, the adversary’s objective is to
deviate the model by predicting a high-quality score regardless
of the actual image quality. To reach this goal, we generate the
AE by adapting the optimization procedure used in previous
works [3], [4] into a non-constrained problem. Specifically, we
relax the optimization procedure to the following:

xadv = argmin
x

[ytarget −Mw(x)]
2 s.t xadv ∈ I, (1)

where I denotes the image space and ytarget denotes the
maximum achievable quality score by the model. In other
words, we are looking for a solution xadv that minimizes the
distance between the predicted score Mw(xadv) and ytarget.
This particular scenario where ytarget is set as the maximum
achievable quality score does not generalize to the targeted
attack’s context. The same procedure can be followed to
achieve any different target score ytarget.

In the untargeted scenario, on the other hand, the adversary
aims to reduce the accuracy of the IQA model without
necessarily deviating it to predict a specific score. For example,
it can be achieved by deceiving the model to predict good-
quality scores for poor-quality images and inversely. In our
attempt to implement this attack, we shift the problem into
the following optimization problem:

xadv = argmax
x

[Mw(xorig)−Mw(x)]
2 s.t xadv ∈ I, (2)

where xorig refers to the original, clean image (before at-
tacking it). This formulation presents a problem during the
generation of the AE: a gradient-based optimization approach
relies on the gradient of the loss function w.r.t the input image
to generate the AE. In an image classification context, the
loss is computed by performing the difference between the
one hot encoded vector corresponding to the predicted class
of xorig and the actual probability vector predicted by the
model. Applying it directly to a regression problem will lead
to a zero loss function thus canceling out the gradient and the
attack. One possible solution could be to consider the Mean
Objective Score (MOS) as an equivalent to the label vector.
However, this alternative supposes the availability of the MOS
during the attack, which is hardly verified. To address this
issue, we suppose that the adversary can estimate the MOS by
using prior performance information, such as the Root Mean
Squared Error (RMSE) of the target model, which is readily
available. We give the formula of the RMSE by:

RMSE =
√

E[(mostest − ytestpred)
2] (3)

where E denotes the mathematical expectation, mostest refers
to the ground truth scores and ytestpred are the predicted scores on
the test set samples. On the other hand, the standard deviation
σS formula of a given set of points S having an average value
of µS , is computed as follows:

σS =
√
E[(S − µS)2] (4)

If the set of points S follows a normal distribution
N (µS , σ

2
S), then any sample s ∈ S falls within the range

[µS − 3 × σS , µS + 3 × σS ] and more specifically within
[µS − σS , µS + σS ] with a very high confidence. Similarly,
given ypred, the predicted score of a given sample, we assume
that the true value of mos falls within [ypred(i) − 3 ×
RMSE , ypred(i)+3×RMSE] and try to estimate a certain
m̂os that is close to mos. Thus, Eq.(2) becomes:

xadv = argmax
x

[m̂os(x)−Mw(x)]
2 s.t xadv ∈ I (5)

Eq.(5) is derived from Eq.(2) because the attacker cannot
access the MOS. Our intuition is based on the similarity
between the RMSE and the standard deviation formula as
explained earlier. In order to achieve this, we draw 10 samples
m̂osj ∼ N (ypred, RMSE2), then compute their average to
obtain the final m̂os.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We first selected the most commonly used CNN architec-
tures for IQA, namely ResNet50 [19], VGG16 [20], and In-
ceptionV3 [21]. We assume, however, that similar conclusions
can be drawn about other CNNs due to the transferability
of attacks across CNN models [14]. Then, we used transfer
learning to adapt these pre-trained models to the BIQA task.
Transfer learning was achieved by freezing the weights of the
CNN backbone as a feature extractor and retraining the Fully
Connected (FC) layers on the new IQA task. The training
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TABLE I: Initial performance of the CNN backbones on the
TID2013 and Koniq-10k datasets.

Model Dataset SRCC PLCC KRCC RMSE

ResNet50
Koniq-10k

0.825 0.860 0.635 0.209
VGG16 0.813 0.853 0.622 0.239
InceptionV3 0.707 0.769 0.520 0.289

ResNet50
TID2013

0.942 0.948 0.789 0.332
VGG16 0.930 0.943 0.774 0.347
InceptionV3 0.875 0.911 0.695 0.386

process has been performed using default hyperparameters,
specifically, a FC of two hidden layers with a hidden unit
parameter of 1024 for each, a learning rate of 10−3, and a
batch size b = 16. Next, we fine-tuned the models on two
widely used IQA datasets, including the TID2013 [11] dataset
and the Koniq-10k [10] dataset. The first contains synthetic
distortions, while the second includes images with authentic
distortions. Initial performance obtained from the three consid-
ered CNN backbones on both datasets, i.e., without any attack,
are reported in Table I. It is important to note that our main
objective is not to get the best possible performance from the
model but rather to get an efficient model that neither over-fits
nor under-fits the training data.

We considered in our experiments three widely used ad-
versarial attacks, namely Fast Gradient Method (FGM) [15],
Basic Iterative Method (BIM) [22] and Projected Gradient
Descent (PGD) [23] with varying values of the ϵ parameter
(ϵ ∈ {0.001, 0.01, 0.1, 1}) and niter = 10 for iterative
attacks. We believe that the choice of the attack is not very
crucial, as the main objective of this work is to adapt the
concept of adversarial attacks to the IQA task in both targeted
and untargeted settings. We used the code provided by the
CleverHans software library [24] to which we added further
modifications and adjustments in order to make it work in the
context of our study. We compared different attacked CNN
backbones to the performance of the initial model, i.e., without
attack, in terms of Pearson’s Linear Correlation Coefficient
(PLCC), Spearman’s Rank Correlation Coefficient (SRCC),
Kendall’s Rank Correlation Coefficient (KRCC), and Root
Mean Squared Error (RMSE). The objective of the attack is to
deviate from the model’s predictions, which can be observed
by the reduction of the correlation scores and the augmentation
of the RMSE coefficient. In a targeted attack scenario, the
objective is to achieve a correlation score closer to zero. While
a lower correlation score indicates a better performance of the
attack in the untargeted scenario.

We also compared the different scenarios in terms of image
similarity, between xorig and xadv . This gives us an idea about
the degree of visibility of the perturbation. Since the objective
of this study also includes an investigation of the potential
correlation between the visibility of added perturbations and
the success of the attack. We refer for this purpose to the
FR metric Learned Perceptual Image Patch Similarity (LPIPS)
[6] to compute the similarity score between xadv and xorig.
LPIPS has been shown to be effective in capturing complex

(a) Koniq-10k

(b) TID2013

Fig. 2: SRCC on the test set with respect to the variation of ϵ
and the launched attack.

and subtle differences between images, making it thus more
correlated with human perceptual judgments. A higher value
of LPIPS score indicates a higher visibility of the adversarial
perturbation compared to the original image.

B. Results and Analysis

Tables II and III provide a summary of the reported per-
formance of the IQA models in the targeted and untargeted
scenarios, respectively. Each table represents a specific attack
mode, and reports the results of the three attacks on the
considered CNN architectures with variable ϵ magnitudes. In
the following, we refer to the success score of an attack as
the difference between the model’s initial performance and
its performance when subjected to the attack. To better help
visualize the reported results, Fig. 2 displays the variation of
the SRCC w.r.t ϵ and the launched attack. We refer to the
initial performance of the IQA models, i.e., on clean images,
by ϵ = 0, and we provide the following equation in order to
clarify the meaning of ϵ:

xadv = xorig + ϵ× xnoise (6)

where xnoise refers to generated adversarial perturbation.
Tables II and III illustrate that the three tested CNN back-

bones show the same vulnerability to the considered attacks
regardless of the architecture. This vulnerability is evident in
the drastic drop in correlation scores as illustrated in Fig. 2.
Furthermore, it indicates that none of the characteristics proper
to any of the tested architectures represent a robustness aspect
against adversarial attacks.

Tables II, III and Fig. 2 also indicate that iterative attacks,
such as BIM and PGD, achieve higher success scores com-
pared to the FGM attack and lower LPIPS. This finding is
consistent with the view of the attack as an optimization
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TABLE II: Performance scores obtained on the attacked CNN backbones with the variation of ϵ in a targeted mode.

Attack Dataset CNN ϵ = 0.001 ϵ = 0.01 ϵ = 0.1 ϵ = 1
SRCC PLCC KRCC RMSE LPIPS SRCC PLCC KRCC RMSE LPIPS SRCC PLCC KRCC RMSE LPIPS SRCC PLCC KRCC RMSE LPIPS

FG
M

Koniq-10k
ResNet50 0.737 0.799 0.549 0.199 0.000 0.712 0.771 0.521 0.256 0.061 0.409 0.424 0.283 0.374 0.771 0.142 0.148 0.093 0.175 1.328
VGG16 0.731 0.767 0.538 0.187 0.000 0.718 0.730 0.523 0.269 0.061 0.627 0.644 0.445 0.321 0.739 -0.211 0.185 -0.143 0.074 1.341

InceptionV3 0.600 0.686 0.427 0.247 0.000 0.613 0.696 0.437 0.250 0.057 0.530 0.553 0.371 0.454 0.709 -0.137 0.123 -0.091 0.198 1.180

TID2013
ResNet50 0.863 0.878 0.677 0.814 0.313 0.709 0.764 0.526 1.423 0.355 0.075 0.248 0.044 0.454 0.849 -0.091 0.290 -0.057 1.455 1.256
VGG16 0.862 0.884 0.675 0.731 0.313 0.701 0.776 0.515 1.448 0.351 0.124 0.231 0.075 0.634 0.829 0.084 0.250 0.051 0.480 1.278

InceptionV3 0.785 0.865 0.597 0.510 0.314 0.621 0.760 0.449 0.682 0.355 0.217 0.273 0.146 0.416 0.812 -0.070 0.095 -0.047 0.101 1.138

B
IM

Koniq-10k
ResNet50 0.186 0.286 0.125 0.325 0.006 0.066 0.083 0.044 0.540 0.294 0.119 0.147 0.078 0.844 1.178 -0.100 0.100 -0.066 1.127 1.332
VGG16 0.052 -0.021 0.035 0.428 0.005 -0.011 0.030 -0.008 1.055 0.290 0.005 0.022 0.003 1.152 1.234 0.059 0.076 0.039 1.033 1.376

InceptionV3 0.296 0.447 0.200 0.391 0.006 0.333 0.361 0.225 0.372 0.275 0.086 0.091 0.057 0.203 1.184 -0.091 0.077 -0.060 0.178 1.308

TID2013
ResNet50 -0.020 0.413 -0.016 1.360 0.320 0.129 0.131 0.086 2.993 0.494 -0.088 0.118 -0.061 3.603 1.160 0.022 0.134 0.015 13.866 1.212
VGG16 -0.146 0.189 -0.094 1.232 0.319 0.051 0.081 0.033 3.908 0.486 0.083 0.118 0.056 5.444 1.195 0.012 0.060 0.007 25.786 1.312

InceptionV3 0.262 0.489 0.180 1.182 0.320 -0.032 0.079 -0.020 2.047 0.484 -0.020 0.071 -0.012 1.108 1.117 0.002 0.041 0.002 2.385 1.258

PG
D

Koniq-10k
ResNet50 0.612 0.662 0.440 0.200 0.000 0.167 0.312 0.112 0.344 0.009 0.444 0.534 0.307 0.693 0.365 -0.081 0.116 -0.053 0.371 1.378
VGG16 0.589 0.631 0.417 0.177 0.000 0.184 0.220 0.124 0.281 0.010 0.516 0.533 0.358 0.271 0.365 0.384 0.363 0.262 0.108 1.377

InceptionV3 0.485 0.604 0.338 0.237 0.000 0.311 0.481 0.211 0.377 0.010 0.371 0.423 0.253 0.464 0.366 0.022 0.034 0.015 0.487 1.378

TID2013
ResNet50 0.776 0.791 0.577 1.037 0.313 -0.023 0.180 -0.017 1.297 0.325 0.106 0.164 0.072 1.021 0.542 0.153 0.222 0.102 0.466 1.283
VGG16 0.807 0.824 0.608 0.924 0.313 -0.145 0.212 -0.089 1.245 0.325 0.074 0.096 0.053 0.777 0.542 0.058 0.123 0.039 0.571 1.283

InceptionV3 0.738 0.806 0.549 0.546 0.313 0.232 0.489 0.161 1.128 0.326 0.266 0.426 0.181 1.330 0.543 -0.108 0.150 -0.075 1.481 1.283

TABLE III: Performance scores obtained on the attacked CNN backbones with the variation of ϵ in an untargeted mode.

Attack Dataset CNN ϵ = 0.001 ϵ = 0.01 ϵ = 0.1 ϵ = 1
SRCC PLCC KRCC RMSE LPIPS SRCC PLCC KRCC RMSE LPIPS SRCC PLCC KRCC RMSE LPIPS SRCC PLCC KRCC RMSE LPIPS

FG
M

Koniq-10k
ResNet50 0.501 0.556 0.354 0.494 0.000 0.404 0.409 0.285 0.658 0.063 0.294 0.315 0.202 0.402 0.774 0.076 0.086 0.050 0.173 1.327
VGG16 0.449 0.494 0.321 0.639 0.000 0.361 0.329 0.257 0.818 0.064 0.479 0.496 0.329 0.385 0.749 -0.236 0.201 -0.159 0.074 1.345

InceptionV3 0.415 0.462 0.288 0.597 0.000 0.348 0.383 0.239 0.632 0.058 0.474 0.480 0.328 0.472 0.710 -0.138 0.131 -0.091 0.198 1.180

TID2013
ResNet50 0.453 0.424 0.339 2.071 0.000 0.308 0.282 0.228 3.050 0.044 0.130 0.226 0.085 0.454 0.719 -0.096 0.292 -0.060 1.429 1.295
VGG16 0.496 0.462 0.372 2.085 0.000 0.266 0.264 0.194 3.526 0.040 0.107 0.126 0.068 0.714 0.692 0.049 0.224 0.027 0.475 1.317

InceptionV3 0.430 0.428 0.312 1.432 0.000 0.338 0.299 0.238 1.640 0.042 0.299 0.335 0.204 0.426 0.687 -0.012 0.043 -0.008 0.103 1.161

B
IM

Koniq-10k
ResNet50 0.198 0.142 0.137 2.031 0.005 0.088 0.063 0.061 2.617 0.269 -0.109 0.214 -0.082 1.814 1.109 -0.015 0.282 -0.008 6.751 1.303
VGG16 0.157 0.080 0.110 2.722 0.006 0.047 0.070 0.035 6.042 0.255 -0.112 0.162 -0.078 15.413 1.202 -0.201 0.288 -0.136 22.329 1.294

InceptionV3 0.215 0.203 0.145 1.734 0.006 0.044 -0.014 0.031 1.835 0.273 -0.211 0.333 -0.141 0.959 1.184 -0.463 0.474 -0.313 0.374 1.307

TID2013
ResNet50 0.144 0.118 0.103 10.539 0.005 0.019 0.073 0.015 15.815 0.198 -0.429 0.553 -0.337 7.335 1.156 0.046 0.044 0.031 22.722 1.280
VGG16 0.158 0.182 0.119 11.739 0.004 0.057 0.094 0.042 35.436 0.160 -0.499 0.484 -0.379 46.853 1.109 -0.240 0.335 -0.164 173.622 1.268

InceptionV3 0.253 0.161 0.178 5.235 0.004 0.057 0.119 0.041 6.507 0.203 -0.233 0.501 -0.159 1.703 1.168 -0.138 0.534 -0.093 1.409 1.269

PG
D

Koniq-10k
ResNet50 0.357 0.399 0.258 0.699 0.000 0.230 0.172 0.158 1.928 0.010 0.379 0.285 0.273 1.027 0.368 -0.135 0.414 -0.090 0.519 1.377
VGG16 0.341 0.346 0.245 0.910 0.000 0.219 0.121 0.155 2.537 0.010 0.229 0.117 0.179 0.839 0.368 -0.453 0.604 -0.292 0.725 1.377

InceptionV3 0.319 0.339 0.223 0.804 0.000 0.256 0.223 0.175 1.704 0.010 0.314 0.195 0.217 1.130 0.367 -0.026 0.348 -0.017 0.721 1.378

TID2013
ResNet50 0.320 0.291 0.235 2.682 0.000 0.023 0.108 0.018 9.619 0.009 -0.220 0.606 -0.138 5.158 0.279 0.127 0.209 0.087 1.175 1.342
VGG16 0.362 0.329 0.270 2.594 0.000 0.157 0.133 0.115 10.673 0.008 -0.426 0.587 -0.314 5.624 0.279 -0.521 0.774 -0.338 1.579 1.343

InceptionV3 0.408 0.362 0.298 1.823 0.000 0.145 0.059 0.106 4.912 0.008 -0.206 0.371 -0.143 3.116 0.279 -0.153 0.687 -0.113 0.738 1.342

Fig. 3: Attack’s success scores w.r.t LPIPS.

problem, where iterative methods can achieve better results
than a single-step method like the FGM attack. Moreover,
the results also exhibit a trade-off between the attack success
(drop in correlation scores) and perturbation visibility (LPIPS
score). The best-performing attack in terms of success score
(whose correlation scores are displayed in bold in Tables II
and III) may not necessarily achieve the lowest LPIPS scores
and vice versa. Overall, the attack’s magnitude ϵ and LPIPS
score are inversely proportional. Figures 3 and 4 illustrate the
relationship between LPIPS score and, respectively, the attack
success score and the SRCC. Surprisingly, there appears to be
a low correlation between the LPIPS score and the resulting

Fig. 4: SRCC scores w.r.t LPIPS.

SRCC and success score. This is highlighted in Figs. 3 and 4
by scattered plotted points that do not show a clear pattern.

This correlation highlights the importance of carefully bal-
ancing the attack magnitude and visibility in order to achieve
optimal attack performance. Nevertheless, while an increase
in the LPIPS score may generally indicate better attack per-
formance, it is not always the case. According to Fig. 2, an
increase in ϵ can have the opposite effect, BIM’s correlation
score for example increases for ϵ = 1e-2 on VGG16 and
Resnet50 in the TID2013 dataset when compared to ϵ = 1e−3.
This finding calls into question our initial hypothesis that
attack effectiveness is highly correlated with the magnitude
and thus the visibility of the attack. Furthermore, we observe
that untargeted attacks have a tendency to converge faster than
targeted attacks. This can be justified by the fact that targeted
attacks aim to achieve a specific goal, making them more
difficult to optimize.

In Fig. 5, we illustrate PGD attacked versions of a few
samples with varying values of ϵ. We note that quality scores
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Fig. 5: Visual comparison of original images with their at-
tacked versions under variable ϵ values.

are normalized for an easier comparison between the datasets.
It is noteworthy that the attack achieves optimum results from
ϵ = 0.01, but perturbations start slightly appearing in low
texture regions from this specific value. This suggests that
ϵ values in the range of 0.01 establish a favorable balance
between perturbation visibility and attack performance. Upon
further visualizing the resulting samples, we also noticed
that in some cases, targeted attacks fail to maximize the
quality scores and instead have the opposite effect. Conversely,
untargeted attacks can outperform targeted attacks on poor-
quality images and achieve higher predicted quality score.

V. CONCLUSION

In this work, we investigated the vulnerability of deep CNN-
based BIQA metrics to adversarial attacks. We summarize
our key contributions in what follows: Firstly, we proposed
a framework to generate AEs by adapting widely used image
classification attacks to the IQA regression context. Secondly,
we introduced the untargeted mode in the context of BIQA
and showed that it can outperform targeted attacks in certain
scenarios. Thirdly, we investigated the correlation between
the attack magnitude and attack success. Then concluded that
although a trade-off between the visibility of the perturbation
and the effectiveness of the attack exists, higher attack magni-
tude does not necessarily imply higher attack success scores.
Finally and most importantly, we demonstrated the widespread
vulnerability of CNNs used in BIQA context, which opens
new challenges to develop defense techniques and highlights
the importance of ensuring the robustness of BIQA models.

Moving forward, this work also leaves room for further
perspectives. For instance, the investigation of the robustness
of vision transformers-based IQA metrics against adversarial
attacks is much desired. Moreover, the development of defense
mechanisms to secure the IQA models is a promising avenue
of paramount importance, as many systems rely on their
performance.
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Abstract—Assessing the performance of video stabilization
algorithms is still in its infancy compared with the state-of-the-
art in video quality assessment, where the focus is on classic
distortions such as noise, blur, lighting problems, and coding
artifacts. In this study, we present a new blind video stabilization
quality assessment metric based on learning sensor outputs via a
novel deep neural network. We build an architecture based on a
convolutional LSTM to estimate accelerations given by an inertial
measurement unit sensor with no additional information than
video frames. The experimental study was carried out on a new
dedicated dataset, which showed the effectiveness of our metric
in characterizing the level of shakiness of videos, in addition, we
demonstrate the efficiency of our system to learn acceleration
data provided from sensors, which opens ambitious perspectives
in retrieving sensors data from any video.

Index Terms—VSQA, Video Quality, Stabilization, LSTM,
ConvLSTM2D, IMU, Accelerometer

I. INTRODUCTION

A significant number of videos are produced every day as
a result of the pervasive usage of mobile video recording
equipment. However, such videos frequently experience video
instability or shakiness. This distortion is often responsible for
various artifacts and degradations, such as loss of resolution,
blur, and geometric distortions, which inevitably affect video
quality and cause visual fatigue and discomfort.

These spatio-temporal distortions also make high-level tasks
such as object recognition and visual tracking difficult. This is
mainly due to the speed observers process the visual stimuli,
particularly in the presence of visual discomfort and highly
variable visual content over time [1]. It should be noted that
such limitations also exist in the field of computer vision, but
not for the same reasons, which are purely psychovisual and
physiological in the case of the brain. For example, the per-
formance of algorithms for object detection and identification,
visual tracking, segmentation, and coding is affected by video
shakiness. It is therefore important to have metrics that can
measure the level of instability in videos allowing us to assess
the video quality and develop techniques for correcting such
instabilities in real time or in off-line video analysis mode.

In recent years, numerous effective and economical tech-
niques, known as Digital Video Stabilization (DVS), have
been developed to overcome frame-to-frame shakiness [2].
However, so far, there is still a need to develop a reliable
objective metric to quantify the performance of these increas-

ing numbers of DVS approaches [3], [4]. Since this field
remains far less explored, in this paper, we propose a no-
reference video quality assessment metric dedicated to Video
Stabilization Quality Assessment (VSQA).

VSQA is the process of evaluating the performance of DVS
algorithms in terms of perceptual quality [5]–[7]. It should be
noted that the evaluation of the perceptual quality of video
stabilization results can be carried out using the same proto-
cols and conventional approaches used for Image and Video
Quality Assessment (IQA and VQA). Three categories can
be distinguished according to the availability of the original
version (stabilized video), reduced information, or the absence
of stabilized video. The Full Reference (FR) VSQA consists
of estimating the difference between the original video and its
stabilized version. However, for the case of Reduced Reference
(RR) a reduced amount of information is available in the
case of the original video. The No-Reference (NR) approach
focuses on estimating the level of shakiness without using any
prior information about the original version of the video.

The main challenge in designing a FR VSQA is the avail-
ability of a physically stable version to be used as ground-
truth data. Most NR VSQA methods for assessing the quality
of visual content require a priori knowledge of the original
version or are based on distortion models to measure their
level of severity and their impact on the observed video signal,
making them RR and not NR methods.

The aim of this study is to develop a stabilization metric on
which DVS approaches could rely through their benchmark
study. The main contributions of this study are:

• We develop the first blind VSQA approach based on
learning IMU (Inertial Measurement Unit) sensor data
via a Recurrent Neural Network (RNN). Our system can
provide an estimation of the accelerometer data between
video frames with no additional information. We develop
an algorithm based on the sensor data estimation to
quantify video shakiness and provide a score for the
stabilization quality.

• A new database has been created by adding several levels
of shakiness to a common database previously used to
assess DVS techniques [7]. This provides the scientific
community with a complete and realistic database for
assessing not only VSQA metrics, but also for testing
video stabilization algorithms.
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• The proposed approach is compared with the most
common VSQA approaches and efficient video quality
metrics that consider temporal distortions.

This paper is organized as follows. Section II is dedicated to
a brief overview of the VSQA methods proposed in the field.
We then discuss in detail the proposed approach in Section III
followed by the experimental results in Section IV. Finally, a
conclusion of the work is given in Section V.

II. RELATED WORK

Although different video stabilization methods have been
proposed over the years [2]–[4], the benchmark is usually done
through subjective evaluations due to the lack of reliable objec-
tive evaluation metrics. One of the most important techniques
was proposed by Zhang et al. [7] which is based on computing
the geodesic distance between the motion paths of the stable
and stabilized videos via the Riemannian metric defined on the
manifold of spatial transformations. Keeping in mind that in
most cases the stable video is not on hand, this FR technique
is often difficult to apply in most real-life applications. A NR
stabilization assessment technique has been introduced by the
same group [6] using the geodesic curvature to estimate their
metric. The same database from their previous study has been
used for the experimentation; however, the lake of a public
implementation makes it hard for DVS approaches to rely on
this metric for a benchmark study.

In the literature, the widely used NR metrics in VSQA
are the inter-frame PSNR-based/SSIM-based metrics. Despite
its simplicity, the Interframe Transformation Fidelity (ITF)
[8] seems to be the most common method in this field
of work. ITF is based on the video inter-frame calculation
expressed by the average inter-frame PSNR on the whole
video. Interframe Similarity Index (ISI) is another widely used
score in DVS benchmark studies. Similar to ITF, ISI is an
interframe metric that, instead of PSNR, is based on the well-
known Structural Similarity Index (SSIM) [5]. By definition,
ISI simply measures the average of the inter-frame SSIM
through video frames.

Finally, we should point out that spatio-temporal video
quality metrics such as VSFA [9] or VIIDEO [10] could be
used for assessing instability (shakiness) in videos. However,
since these metrics are initially designed to deal with several
types of distortions, their performance against video instability
are very limited.

III. PROPOSED APPROACH

Video shakiness is mostly due to random micro-motions of
the camera during the recording process. This phenomenon is
linked to various parameters, including the trepidation of the
hand or environmental aspects such as recording on a moving
vehicle. Shakiness is one of the rare distortions that uniformly
affects all pixels of a frame [2]. In this study, we develop the
first NR VSQA approach based on learning IMU data via an
LSTM network. The estimated accelerometer data from the
IMU measurements which is fed into the network enable the
camera shake levels to be quantified objectively and reliably

Fig. 1: Accelerometer data of a video with both shaky and
stable sequences.

through the learning process. A perceptual quality score, which
is to be analyzed in relation to the subjective appreciation of
the observer, can thus be calculated.

The idea behind relying on acceleration is based on the
nature of the shakiness distortion. Indeed, video shaking is
generally the result of random oscillations related to uninten-
tional and uncontrollable movements of various magnitudes
and orientations. In certain specific situations, they can occur
according to a pseudo-periodic process; this is, for example,
the case when shooting from a car moving over a more
or less flat terrain. One of the major difficulties is then
finding a reliable solution that allows one to differentiate
between these unintentional camera movements and those of
the various moving objects in the scene. The distribution of
some motion features, such as velocity and acceleration, of
points of interest could help in designing a robust camera
instability estimation. Using IMU acceleration measurements
is a plausible solution to estimate the level of shakiness in
the video. Figure 1 illustrates the acceleration profile of a 10-
second video sequence.

A. IMU sensor Accelerometer data for shaking estimation

Lets denote F =
[
f0
t0 , f

1
t1 , . . . f

i
ti . . .

]
vector containing all

frames of the video, while f i
ti is the ith frame of size M ×N

taken at the timestamp ti. Furthermore, we denote Accix, Acciy ,
and Acciz corresponding to the Cartesian acceleration vector
of the frame i from the precedent frame i− 1.

Since the main goal is to take advantage of the acceleration
data to detect vibrations (shakiness) in the video frames,
we propose to model vibrations of the camera by a simple
acceleration vector module. Despite the fact that space infor-
mation of the acceleration are lost after such simplification,
the benefit consists of reducing the output complexity on one-
dimensional data instead of three. This drastically improves
the performance of our learning process. Eq. (1) provides
information on how to estimate the acceleration module ai
through ∥.∥2.

ai = ∥
[
Accix, Acciy, Acciz

]
∥
2

(1)
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Now, let A = {aτ0 , aτ1 , ..., aτj ...} where aτj corresponds to
the acceleration given by the accelerometer sensor exactly at
the timestamp τj . In real-world applications, sensor times-
tamps τ and frame timestamps t are very rarely synchronized.
For that, we propose the following equalization process ex-
pressed as:

p = argmin
j
|ti − τj | (2)

âti = aτp . (3)

While âti is the estimation of the acceleration sensor at the
exact timestamp ti. We then denote Â = [ât0 , ât1 , ...âti . . .]
the estimated acceleration vector synchronized with the frame
vector timestamps.

The aim now is to design a system that can estimate the
acceleration feature from frames changing velocity. However,
due to the non-linearity of the data and the complexity of
retrieving accelerations between frames, tackling such a prob-
lem via a deep learning network so far seems to be the most
appropriate option. The idea is to inject the frame sequence
vector F as input and fix the acceleration vector Â in the
output to develop a system that can estimate the acceleration
without the information given by the IMU. Since the network
should have the ability to estimate velocity changes between
frames, RNN would be the ideal candidate due to its ability
to establish connections between nodes to create a cycle,
allowing output from some nodes to affect subsequent input
to the same nodes. This special feature allows RNN to exhibit
a temporal dynamic behavior. For this purpose, in this study,
we select the Conv2DLSTM Recurrent network.

B. Convolutional Long Short Term Memory Network (ConvL-
STM2D) - data ingestion

Inspired by the success of CNN and RNN, Conv2D-LSTM
network was proposed in [11], which mainly consists of 2-
Dimensional Convolutional Neural Networks (Conv2D) in-
stead of 1D input fed into LSTM network. Convolutional
layers take advantage of grasping the feature spatially, and an
LSTM system is, so far, one of the best at analyzing complex
time sequences.

The convolutional layers are able to learn the relevant
features from an image at different levels. In addition, LSTM
is able to bridge long time lags between inputs over arbitrary
time intervals. In our case, the velocity change detected by
the sensor is computed between two consecutive timestamps.
Therefore, the time interval is obviously fixed at two, which
means that we inject and learn two consecutive frames (f i

ti

and f i+1
ti+1

) synchronized with the acceleration output âti+1

of the i+ 1th frame. For that, the output acceleration vector
Â is sampled by two, then, to simplify our annotations, we
propose to multiply the indexes of F by two instead of using
the dividing indexes in Â. Our system is then summarized
in Eq. 4. Figure 2 shows the architecture of the proposed
ConvLSTM2D. We note that ft, Ot, it and Ct are well-known
LSTM parameters, while their respective expressions could be
found in [11].

Fig. 2: Proposed architecture for ConvLSTM2D.

input:F =
[
f0
t0 , f

1
t1 , ...f

2i
t2i , f

2i+1
t2i+1

....
]

output:Â = [ât0 , ât1 , ...âti ....]

predicted output: ˆ̂A = [ˆ̂at0 , ˆ̂at1 , ...ˆ̂ati ....]

card(F ) = 2 · card(Â)

(4)

C. Proposed architecture

We propose to construct a architecture around three Con-
vLSTM2D layers. We inject our input into the first Con-
vLSTM2D layer with 10 filters, then a batch normalization
is performed to provide resistance to the vanishing gradient
during training, which positively impacts the convergence
[12]. A max-pooling layer is performed thereafter, despite
the main reason of the pooling which consists in reducing
the dimensionality,it is well known that max-pooling layers
often improve generalization and provide resistance to micro-
distortions [13]. These three layers (ConvLSTM2D, BatchNor-
malization and Max-pooling) are performed sequentially three
times.

We then perform a 3D Convolutions layer with 10 filters in
order to regroup all features extracted in one cube. This cube
is after that flattened into a 1D vector, which is sent into a
Dropout layer with 0.6 dropout probability. The main reason
for putting a Dropout layer is its capability to drop nodes
randomly, which prevents overfitting of our architecture. The
activation function of the model is Sigmoid to provide smooth
gradient, thereby, preventing jumps in output values which can
be close from acceleration features that our network has to
learn.

Finally, despite the robustness of the proposed architecture
as shown in the experiment, its simplicity opens a new
perspective to perform our metric in real-time and provide
a real-time shakiness quality measure of the captured video.
Figure 3 summarizes the architecture constructed to learn IMU
data from video frames.

D. Shakiness metric

The aim of our study is to develop a metric that can be cor-
related with the uncomfortable shaky sequences in the video.
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Fig. 3: Proposed IMU estimation architecture

The main challenge is to differentiate vibrations from scene
changing or usual device motions. Shakiness is characterized
by many motions, with random amplitudes and orientations.
We propose to characterize these special types of fluctuations
by the standard deviation of acceleration derivative. A pooling
step seems to be unavoidable in order to express a global score
for the whole or a sequence of the video. We denote the length
of the pooling window by L. Our ShaKiness Metric (SKM) is
expressed as follows:

SKM =

√∑L−1
0 (∇(ˆ̂a)ti −∇(ˆ̂a)t)2

L
(5)

While ∇(ˆ̂a) is the acceleration signature gradient. Further-
more, if the aim is to provide a global quality score for a
video, the window L is set to the length of the whole video.

IV. EXPERIMENTAL STUDY

In the current section, we introduce our collected dataset for
training and validating the proposed approach. Our experimen-
tation starts by demonstrating the efficiency of the proposed
architecture in learning accelerometer sensors data from video
frames; thereafter, we compare our metric (no-reference) with,
the most common shakiness metrics in another dataset rather
than the training data.

All our experiments were performed on an Intel(R)
Core(TM) i7-8086K CPU @ 4.00GHz 12 Cores, 32Gb of
RAM, with the GPU: Nvidia GeForce RTX 2080Ti card.
Our training dataset has been constructed with a SAMSUNG
Galaxy Note S10 device containing IMU (Initial Measurement
Units) sensors. We notice that IMU is used only for accelerom-
eter data.

A. Dataset

1) Training dataset: Our dataset is constructed from five
two-minute videos recorded at 30 frames/seconds. The collec-
tion process consists of recording videos of moving objects in-
termittently with and without shakiness, meanwhile, the IMU
sensor is collecting the accelerometer data. After the collection
process, as stated in Section III-A a time equalization step
should be performed to synchronize frames and accelerometer
data timestamps resulting in a total of 18000 frames (five

videos × two minutes × 60 seconds × 30 frames) in our
dataset. It is important to note that the collected dataset is only
used for training and validating the convergence of our deep
learning model. The proposed stabilization metric is compared
with the state-of-the-art in a new dataset inspired by [7] and
completely different from the training dataset.

2) Testing and validation datasets: The main challenge in
assessing DVS approaches is the extreme difficulty of creating
ground-truth data. Wang et al. [7] have introduced a dataset
which consists of pairwise stable/shaky videos, out of which
each shaky video is assigned with an ideally stable video that
has the same content as the reference. This has been done
by attaching two cameras, Dji Osmo (for stable output) and
GoPro (for shaky outputs), to the same rod while collecting
data simultaneously. Subsequently, a data refinement process
[14] is then performed to superpose shaky/stable outputs. To
encompass a variety of shaky motions and scene complexities,
authors performed a collection process in nine scenarios while
each of them contains five short shaky videos and their
stable versions: eight types × five videos × two variants
(shaky/stable): walking, climbing, running, riding, driving,
crowd, near-range object and dark.

One proposes to create several nuances of shakiness by
generating different scales of frame vibrations artificially. To
do so, we start by selecting an empty Sub-Frame sfi of size
(M − b) × (N − b) centered inside a frame f i. The sub-
frame is then slid and moved vertically by δx ∈ [− b

2 ,
b
2 ]

and horizontally by δy ∈ [− b
2 ,

b
2 ] on the border frame, per

frame. Due to the uniform nature of shakiness [2], the random
nature of δx and δy following a Gaussian distribution perfectly
simulates shakiness within the video; and, due to the standard
deviation of the Gaussian distribution, the aggressiveness of
the shakiness is calibrated. The entire data generation process
is expressed in algorithm 1 and figure 4 illustrates the shaki-
ness generation process to construct our database.

B. Results
1) IMU sensor data - learning performance: We demon-

strate in this section the capacity of our architecture to learn
data from accelerometer sensors from video frames. Our
dataset contains (18000 frames) on which the estimation of
the accelerometer sensor is associated to each frame. The data
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Σ = [σ1, σ2, ..., σn];
for each video in dataset do

L← number of frames;
for each σi in Σ do

X ← RandomGaussianVector(size =
L,min = 0,max = b, std = σi );

Y ← RandomGaussianVector(size = L,min =
0,max = b, std = σi );

for each frame i ≤ L do
δx = X[i];
δy = Y [i];
sfi = f i[δx : δx +M, δy : δy +N ];

end
Write the new video from sf [...]

end
end

Algorithm 1: Shakiness generation algorithm

Fig. 4: Illustration of shakiness level generation.

distribution has been carried out as follows: 80% of the data
are dedicated to the training set, of which 10% is used for
validation and 20% of the whole data are used for testing.

Table I demonstrates the performance parameter of the
proposed model. In addition, it is worth to note that our goal
is to estimate the graph shape of the acceleration instead of
retrieving exact amplitudes. The proposed metric relies on
acceleration fluctuations and does not take into account the
intensity since it is considered as a relative value.

2) Shakiness metric - Experimentation: We demonstrate in
this section the effectiveness of our shakiness metric against
existing state-of-the-art metrics (ITF [8] (Eq. 6) and ISI [5]
(Eq. 7) metrics). We add to our comparative study two robust
and well-known video quality metrics (VIIDEO metric [10]

TABLE I: Proposed model - KPIs

Training Validation Test
Mean absolute error (Average)
|âi − ˆ̂ai|

0,061 0,073 0,088

Mean absolute relative error (Average)
|âi−ˆ̂ai|

âi

1,1% 1,4% 1,8%

(a) Crowd sequence (b) Driving sequence

(c) Dark sequence (d) Object sequence

Fig. 5: Examples of our dataset used for evaluation

and VSFA metric [9]). VIIDEO and VSFA are well known to
be designed to quantify the spatio-temporal aspect of a video
which could represent shakiness distortions. Table II presents
in detail the results obtained from the assessed metrics through
a progressive shakiness intensity given by σ, while σi+1 is
more shaky than σi.

ITF =
1

N − 1

N−1∑
i=1

PSNR(f i, f i+1) (6)

ISI =
1

N − 1

N−1∑
i=1

SSIM(f i, f i+1) (7)

The results shown in Table II confirm the superiority of
the proposed metric. The proposed approach outperforms all
metrics in every category, except for riding and crowd videos.
In these specific categories ISI and VIIDEO metrics show,
respectively, a better result. This is probably due to the nature
of our learning dataset, which does not include such kind
of shakiness since these videos are characterized by specific
motions of camera with various objects in motion. In fact, even
if the proposed scheme does not have the best performance,
we observe acceptable achievement from ITF and ISI which
explains their wide use in DVS benchmark study. However, our
study shows the limits of the VFSA and VIIDEO video quality
metrics against the shakiness noise. Indeed, performance of
the VFSA metric is totally uncorrelated in some categories
(eg. Riding), while VIIDEO shows slightly better performance
despite a very high time-consuming process. This proves once
again the need to develop specific shakiness video quality
measures.

In fact, time-consuming is another drawback of all these
metrics expect ITF (see Table III). The proposed metric shows
similar time execution performance as ITF, while performance
of the proposed approach is drastically better. This character-
istic allows the proposed metric to be implemented in real-
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TABLE II: Ranking on progressive shakiness aggressiveness
and Spearman correlation coefficients for ITF [8], ISI [5],
VFSA [9] and VIIDEO [10] on each category. Spearman
correlation is estimated between the shakiness magnitude
expressed via σi and the quality metric outputs

Category Metric σ1 σ2 σ3 σ4 σ5 σ6 SpearCorr
ITF [8] 2 4 5 3 6 1 0.09
ISI [5] 1 2 4 6 5 3 0.60

VIIDEO [10] 4 1 3 5 2 6 0.43
VFSA [9] 2 1 3 4 5 6 0.94

Object

Our metric 1 2 3 4 6 5 0.94
ITF [8] 4 1 3 2 5 6 0.60
ISI [5] 4 1 2 5 3 6 0.54

VIIDEO [10] 2 1 4 5 6 3 0.78
VFSA [9] 2 3 1 6 4 5 0.66

Dark

Our metric 2 1 3 4 5 6 0.94
ITF [8] 2 1 3 5 6 4 0.77
ISI [5] 3 1 2 4 6 5 0.77

VIIDEO [10] 2 1 3 4 5 6 0.94
VFSA [9] 1 2 4 6 3 5 0.71

Crowd

Our metric 1 2 3 5 6 4 0.83
ITF [8] 1 2 3 4 5 6 0.94
ISI [5] 1 2 5 3 6 4 0.71

VIIDEO [10] 1 2 3 6 5 4 0.77
VFSA [9] 3 4 2 1 5 6 0.49

Running

Our metric 1 2 3 4 5 6 1.00
ITF [8] 2 1 3 6 5 4 0.71
ISI [5] 2 1 3 4 6 5 0.89

VIIDEO [10] 1 2 3 6 5 4 0.77
VFSA [9] 3 6 5 4 2 1 -0.65

Riding

Our metric 3 1 2 5 6 4 0.66
ITF [8] 1 2 4 5 3 6 0.83
ISI [5] 1 2 3 4 5 6 1.00

VIIDEO [10] 1 2 3 6 4 5 0.83
VFSA [9] 1 3 2 6 5 4 0.71

Climbing

Our metric 1 2 3 4 5 6 1.00
ITF [8] 4 2 5 1 3 6 0.26
ISI [5] 2 1 4 3 5 6 0.88

VIIDEO [10] 1 2 5 1 6 3 0.60
VFSA [9] 6 3 2 4 5 1 -0.48

Driving

Our metric 1 2 3 4 5 6 1.00
ITF [8] 1 2 4 5 6 3 0.66
ISI [5] 1 2 3 5 6 4 0.83

VIIDEO [10] 1 2 3 6 5 4 0.77
VFSA [9] 2 3 5 1 4 6 0.54

Walking

Our metric 1 2 3 5 6 4 0.83

TABLE III: Average time consuming performance of ITF [8],
ISI [5], VFSA [9] and VIIDEO [10]

ITF ISI Oracle VFSA Our metric
Avg time consuming(s)

Resolution: 360*480
Size of the video: 16s

Frame rate: 30fps

0.85 s 11.54 s 273 s 9.19 s 1.92 s

time in order to give an explicit output about quality of
streamed videos, which opens up other perspectives for VSQA
techniques.

V. CONCLUSION

In this study, we developed a blind Video Stabilization
Quality Approach (VSQA) that estimates acceleration given
by real sensors with no additional information more than video
frames. The proposed metric shows its superiority in assessing
video stability while at the same time being drastically better
compared to the state-of-the-art approaches when it comes to
time consumption. In addition, our experiments demonstrate
the capacity of our architecture to learn data provided by

the IMU sensor. This sensor emulation could open ambitious
perspectives to retrieve sensors data from offline videos.
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Fig. 1: Overview of the VStab-QuAD database for video stability quality assessment. It includes 320 stabilized video sequences,
which stem from five different video stabilization methods that were applied to 64 unstable video sequences associated with
various challenging scenarios (e.g., urban, selfies, zoom, medical imagery), image distortions, and perceptual quality scores.

Abstract—We introduce VStab-QuAD, a novel Video-
Stabilization Quality Assessment Database, consisting of 320
stabilized video sequences obtained from 64 unstable video
sequences with different contents (crowd, parallax, running,
zooming, etc) using five different strong performing video-
stabilization methods. The stabilized videos that are considered
contain residual instability-induced image distortions and ad-
ditional distortions introduced as a side effect of the digital
stabilization algorithms applied. In addition, this study presents a
comprehensive objective analysis of the video sequences and their
validity for video-stabilization quality assessment. Subjective ex-
periments were performed in a controlled environment using the
single stimulus continuous quality evaluation (SSCQE) protocol,
and their results are included in the database. Therefore, our
proposed VStab-QuAD contains (i) the 64 original videos with
in-capture distortions due to initial video instability, (ii) the 320
stabilized videos produced with the five different algorithms, and
(iii) associated perceptual quality scores.

This paper hence contributes VStab-QuAD as a comprehensive
public benchmark database designed to facilitate the development
of powerful video-stabilization methods and quality assessment
metrics in real-life video acquisition scenarios.

Index Terms—Video Stabilization, Subjective Quality Assess-
ment, Image Distortions, Datasets and Evaluation, Video Pro-
cessing.

I. INTRODUCTION

Thanks to the growing number of devices equipped with
cameras, the production of videos has registered a notable
increase [1]. In 2020, there were over three billion internet
users who watched or downloaded a video content [1]. Most
of the hand-held devices make it easy to capture video. The
captured video with such mobile devices, are generally shaky
and suffer from unwanted motions. As the human visual

system is very sensitive to distortions in such visual material,
the instability of a video is perceived as a disturbing visual
degradation affecting the view experience.

This made video-stabilization one of the most important
applications of video processing. It aims to improve the
visual quality of video sequences by eliminating the unwanted
motion. A video stabilization method generally consists of two
major steps: motion estimation step and motion compensation
step. Motion estimation allows the estimation of the global
camera motion vectors. While in the motion compensation,
global motion vectors are compensated for to remove the
frames jitter and to produce smooth motion trajectories.
A robust video stabilization method should satisfy three major
criteria regarding the perceptual quality: stability, cropping and
visual distortion [2]. An unstable video means the presence
of object instabilities in the whole frame. Cropping is charac-
terised by irregular boundaries after warping frames. As the
warped frames are cropped to obtain a rectangular boundary
for normal video display. The visual distortion criteria could
be any perceptual visual discomfort, e.g, blur, noise, objects
geometry or illumination.

Most of the existing datasets are destined to video-
stabilization methods development and testing [3]. To the
best of our knowledge, no dataset were specifically dedicated
to video-stabilization quality assessment. Our VStab-QuAD is
the first one to fill that space. It aims to facilitate the quan-
tification and benchmarking of video-stabilization algorithms.
A new subjective methodology is proposed, that takes into
account the complexity of the perceptual video stabilization
problems.
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The main contributions of this work are:
• VStab-QuAD, a novel database containing multiple chal-

lenging scenarios that can be used to assess the perfor-
mance of video stabilization methods.

• A subjective video quality study using a new protocol
for the evaluation of the distortions that are typically the
by-product of digital video-stabilization.

• A new subjective quality score measure using a fusion
scheme based on human observers’ preferences. It is
expressed as an explicit combination of the visual- and
stability quality scores.

II. RELATED WORK

Video Stabilization Quality Assessment (VSQA) methods
can be divided into two main categories based on subjective,
and objective assessment strategies.
Subjective assessment involves the investigation of the quality
by asking people’s judgement. A final score representing the
quality is given for each sequence. The authors of [4] proposed
a comparison of stabilized versions of synthetically distorted
endoscopic videos and their synthetic full-reference ones.
They have generated synthetically unstable videos. Then, four
video-stabilization methods have been used to stabilize the
generated videos. The quality were determined by comparing
the videos to their respective full-reference ones. This dataset
was limited only to the endoscopic Videos. In [5], a dataset
of stable and shaky videos was constructed by capturing
realistic stable/shaky videos. Then, digital video-stabilization
algorithms have been running on shaky videos to obtain the
stabilized sequences. They have used the Double Stimulus
Continuous Quality Scale (DSCQS) to assess the subjective
scores . A mean opinion score (MOS) is associated to each
video (ranging from 1, being perfectly stable, to 5, extremely
shaky). The dataset assesses only the stability and does not
take into account other stabilization distortions. In [6], they
propose a user study based on MOS to measure the subject
preference based on the paired comparison between different
methods. Observers are shown several videos and are asked
to select the best one according to some predefined metrics.
Zhang et al. [7] proposed a dataset composed of shaky
videos and their corresponding stabilized ones by running
some classic video stabilization methods. The stability is
ranked by choosing the best stable video. The average rank
is computed for each video to give the final order of the
subjective judgement.
All the state-of-the-art proposed datasets evaluate only the
stability [2], [8]–[10]. However, video-stabilization methods
introduce other degradations that affect the perceptual quality.
Neglecting these degradations gives a biased assessment. In
this work, we intend to investigate all the video-stabilization
impairments.

III. THE VSTAB-QUAD DATABASE

We have constructed a new Video-Stabilization Quality
Assessment (VStab-QuAD) dataset, and then conducted a

human subjective study. A new protocol dedicated to the
video-stabilization QA has been adopted.

A. Acquisition of the Initial Unstable Videos

There are a total of 64 videos in different categories,
including selfie, rotation, zooming, running, climbing, driv-
ing, endoscopic, rolling shutter, dark, and crowd with large
parallax, among others. These videos are provided in raw AVI
format, with frame rates ranging from 24 to 30 frames per
second, and durations ranging from 5 to 10 seconds. Out
of the 64 videos, 46 are novel acquisitions, and 18 were
obtained from related to existing video-stabilization method
papers [11]–[14].

B. Generation of Stabilized Videos

To produce stabilization versions of the initially
unprocessed, real, video data, we consider 5 well established
methods. The 5 softwares are (i) Adobe After Effects (Ae)
warp stabilizer, (ii) Google Photos application, (iii) VirtualDub
Deshaker, (iv) vReveal and (v) VideoProc Converter [15].

AE stabilizer is based on the subspace method in [4],
and YouTube implements the method of L1-optimization on
inter-frame transformations [2]. 320 stabilized videos are then
produced by using these methods leading to a very broad range
of motions trajectories and novel visual artefacts that typically
stem from video stabilization (Figure 2).

C. Dataset Characteristics Analysis

It is important to have different scenarios but also visual
contents rich in spatio-temporal structures at different scales
of observation and under various lighting and viewing angles.
The richness or diversity in videos is computed through spatial
and spatio-temporal descriptors. A set of criteria and measures
to quantify and analyze the richness and representativeness
of image and video databases dedicated to perceptual quality
assessment has been proposed in [16], [17]. In what follows
we will recall the Saptio-temporal Descriptors and apply them
to the analysis of the database.

D. Saptio-temporal Descriptors

The richness of a video signal in terms of visual time-
varying content is measured using the Spatio-temporal infor-
mation.The VQEG group formula has been used [18].

1) Spatial perceptual information: We have used the Sobel
operator to enhance the edges as in [18]. We applied a Sobel
filter for each video frame (Fn). The standard deviation of
the magnitude of the Sobel response is then computed. The
maximum value over time is used to represent the spatial
information content of the video sequence.

SI = maxn{std[Sobel(Fn)]} (1)
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Fig. 2: An example video with its associated motion trajectory according to its horizontal (dx) and vertical (dy) components.
The original trajectory is in blue, and the 5 video stabilization methods we consider, present the remaining colors.

2) Temporal perceptual information: To capture the motion
difference at a location (i, j), the temporal perceptual infor-
mation denoted Mn(i, j) is used. It is computed as follows:

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (2)

where Fn(i, j) is the pixel value at the (i, j) location of nth

frame. The TI measure is computed as the maximum over
time (n) of the standard deviation over space of inter-frame
difference Mn:

TI = maxn{std[Mn]} (3)

High motion Videos are characterized with high TI values.
Figure 3 presents a scatter plot of the spatio-temporal descrip-
tors SI and TI of the original shaky videos. It can be seen that
the still scenes and those with very limited motion are found
when SI is close to 0 (for samples 18 and 14), while scenes
with a lot of motion are found near the upper part of the plot
(for 63, 28, 32). Scenes with minimal spatial detail are located
on the left side of the plot (18, 14, 19), while scenes with the
most spatial detail are located on the right side of the plot (12,
32, 28).

E. Motion trajectory

Optical flow has been used to estimate the motion trajectory
in the original videos. First, features are extracted from each
frame and tracked using the Lucas-Kanade Optical Flow al-
gorithm. The motion is then estimated using a rigid Euclidean
transformation. The motion trajectory of some original videos
in the x and y directions are presented in Figure 1.

IV. SUBJECTIVE STUDY FOR A JOINT VISUAL AND
STABILIZATION QA

A. Experimental Setup

The testing environment included a i7-7700 CPU @
3.60GHz PC equipped with 1920×1080 monitor. A user inter-
face was designed whereby the subjects could view and rate
the videos. The observers begin the test by registering their
information. In the next tab, the test instructions are explained.
Two sessions are proposed in the following: Train session and

Fig. 3: Spatio-temporal diversity of the VStab-QuAD videos
by means of their perceptual Spatial (SI) and Temporal (TI)
criteria

Test session respectively. The aim of the Train session is to
familiarize the observers with the test expectations. The Test
session contains the real test where each subjective score is
recorded. At the end, the observers are asked to give their
preferences between the visual quality and the stabilization
quality.

B. Experimental Protocol

Most of the existing video-stabilization metrics or datasets
only consider stabilization-related evaluation criteria. How-
ever, other degradations may appear as a by-product of video
stabilization. In order to obtain representative data on how
humans perceive the video-stabilization distortions, we have
conducted a subjective study to obtain subjective scores. For
this, we have adopted a new protocol based on single stimulus
continuous quality evaluation (SSCQE) to obtain the subjective
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Fig. 4: GUI of our SSCQE protocol to construct our subjective
quality ratings.

quality scores. It rates all of the stabilized videos. As we
have reported before, evaluating a video-stabilization method
regarding only its stability is not sufficient. In this study, the
overall quality score is obtained by evaluating two criteria, the
visual quality and the stabilization quality.

1) Visual quality: The removal of instabilities is often
accompanied by the introduction of some side effects
that affect the visual quality of the video sequences. In
this part of the study, the observers are asked to evaluate
the perceptual quality with regard to the following
distortions:

• Blur: it is characterized by the lack of sharpness.
• Twisted backgrounds: this distortion mainly occurs

on backgrounds. It represents a wave-like movement
on the background.

• Vibration (shudder): it appears as tremors in the
sequences.

2) Stabilization quality: The main objective of digital
video stabilization is the improvement of the video
quality by removing unwanted camera motion. Two
scenarios are possible after the application of a such
video-stabilization method:

i- The video remains unstable. It means that the sta-
bilization process is inefficient with regard to the
jitters presented in the video.

ii- The moving objects present some latency. This
distortion is the consequence of the suppression of
the wanted motion in the video.

The experiments are performed to evaluate the visual quality
and the stabilization quality. A continuous quality slider is used
to derive the subjective scores. The quality slider is labeled
with five adjectives as mentioned in Table I. All subjects
were instructed to give an opinion quality score of the overall
perceived video sequences. They were seated to perform the
experiments at a fixed distance of twice the screen height.
While this contrasts slightly with our overall experimental
setup which mainly follows [18], we have decided to consider
this typical distance relative to the considered screen resolution
in order the induce more critical disparities within the gathered

TABLE I: Adjectival categorical judgement

Stabilization quality Visual quality
Very annoying Bad
Annoying Poor
Slightly annoying Fair
Perceptible, but not annoying Good
Imperceptible Excellent

ratings by allowing the observers to assess more clearly
the distortions introduced by the stabilization process. This
viewing distance was maintained during each test session, and
throughout the considered observers. All the observers had
either normal vision or corrected to normal vision.

A total of 15 subjects participated in the study, most of
them are graduate students. The subjective test is started with
general information about the study and instructions on how
to participate to the video-stabilization task. In a short training
session, 10 videos were played to familiarize subjects with the
user interface. Following this, a test session was initiated. 160
stabilized videos were randomly and equally divided into 2
sessions. The subjects participated in 4 sessions, 2 for visual
quality and 2 for stabilization quality. These sessions were
separated by at least 24 hours. After completion of both testing
sessions, subjects were asked to indicate their preference
between stability and visual quality. This information will be
used as a weighted trade-off parameter for the combination
score.

C. Joint Visual and Stabilization Subjective Scores
The subjective score is computed as indicated in the ITU-R

recommendation [19]. The ratings was converted into mean
opinion scores (MOS).

MOSj =
1

N

N∑
i=1

rij (4)

where rij represents the ratings of the j th image given by
the i th subject and N is the number of subjects.
We named MOSV and MOSS the obtained score form the
visual quality test and the obtained score from the stabilization
quality test respectively.
The overall score of one video MOSF is obtained using a
the preference weight as follows:

MOSFj = αMOSVj + (1− α)MOSSj (5)

where α is a tuning parameter which encodes the relative
preference between the perceptual visual quality and stabi-
lization quality. It is inferred by means of a subjective survey
as detailed further in the next sub-section.

D. Subjective scores
Figure 5 displays the histogram of Mean Opinion Scores

(MOSs) across the entire database. The plot shows a wide
range of perceptual quality scores, spanning all possible val-
ues. This indicates that the dataset contains a rich variety of
MOS levels throughout.
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(1) (2) (3)

Fig. 5: Histogram of MOS scores covering the VStab-QA. This includes MOSV for visual quality (1), MOSS for stabilization
quality (2), and MOSF for the final joint MOS (3).

TABLE II: Relative preference weight between Visual and
Stabilization quality, as estimated by surveying a human
cohort.

Survey size Visual quality Stabilization quality
15 33.33% 66.66%

Table II presents the results of the subject preferences. We
can notice that 66% of the subjects prefer a stable video, while
33% prefer a better visual quality. Regarding the preference
results, we have fixed the preference weight to α = 0.33. This
parameter has been used to compute the overall MOS score.

V. CONCLUSION AND PERSPECTIVES

We have introduced VStab-QuAD, a novel database ded-
icated to quality assessment of video stabilization methods.
It is comprised of 320 stabilized video sequences from five
different video stabilization methods that were applied to 64
unstable video sequences associated with various challenging
scenarios, along visual- and stability focused MOSs. We pro-
posed an experimental study using subjective scoring, as well
as a novel combined score that jointly considers perceptual
visual quality and video stabilization quality in a structured,
unbiased way. In particular, our combined score will pave
the way for the ever-growing body of literature on video
stabilization in a blind, reference-free context [20]–[22] while
taking into account their impact on visual quality.

Future work includes studying the correlation of objective
metrics with our subjective unified MOS, which encompasses
the considerations of stabilization and visual quality, to help
cope with the by-product artifacts that are typically generated
by VS methods.
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R. Palomar, Å. A. Fretland, B. Edwin, and O. J. Elle, “Towards a video
quality assessment based framework for enhancement of laparoscopic
videos,” in Medical Imaging: Image Perception, Observer Performance,
and Technology Assessment, vol. 11316. International Society for
Optics and Photonics, 2020, p. 113160P.

[32] F. De Simone, M. Naccari, M. Tagliasacchi, F. Dufaux, S. Tubaro,
and T. Ebrahimi, “Subjective assessment of h. 264/avc video sequences
transmitted over a noisy channel,” in International Workshop on Quality
of Multimedia Experience. IEEE, 2009, pp. 204–209.

[33] F. Zhang, S. Li, L. Ma, Y. C. Wong, and K. N. Ngan, “Ivp subjec-
tive quality video database,” The Chinese University of Hong Kong,
http://ivp. ee. cuhk. edu. hk/research/database/subjective, 2011.

[34] M. A. Qureshi, A. Beghdadi, and M. Deriche, “Towards the design of
a consistent image contrast enhancement evaluation measure,” Signal
Processing: Image Communication, vol. 58, pp. 212–227, 2017.

[35] Z. Mortezaie, H. Hassanpour, and A. Beghdadi, “People re-identification
under occlusion and crowded background,” Multimedia Tools and
Applications, pp. 1–21, 2022.

[36] P. Bouttefroy, A. Bouzerdoum, S. Phung, and A. Beghdadi, “Abnormal
behavior detection using a multi-modal stochastic learning approach,” in
2008 International Conference on Intelligent Sensors, Sensor Networks
and Information Processing. IEEE, 2008, pp. 121–126.

[37] P. L. M. Bouttefroy, A. Bouzerdoum, S. L. Phung, and A. Begh-
dadi, “Vehicle tracking using projective particle filter,” in 2009 Sixth

IEEE International Conference on Advanced Video and Signal Based
Surveillance. IEEE, 2009, pp. 7–12.

[38] D. Hasler and S. E. Suesstrunk, “Measuring colorfulness in natural
images,” in Human vision and electronic imaging VIII, vol. 5007.
International Society for Optics and Photonics, 2003, pp. 87–95.

[39] H. Yu and S. Winkler, “Image complexity and spatial information,” in 5th
International Workshop on Quality of Multimedia Experience (QoMEX).
IEEE, 2013, pp. 12–17.

[40] K. Matkovic, L. Neumann, A. Neumann, T. Psik, and W. Pur-
gathofer, “Global contrast factor-a new approach to image contrast.”
Computational Aesthetics, vol. 2005, no. 159-168, p. 1, 2005.

[41] K. Garg and S. K. Nayar, “When does a camera see rain?” in 10th
International Conference on Computer Vision (ICCV). IEEE, 2005,
pp. 1067–1074.

[42] A. Beghdadi, M. Asim, N. Almaadeed, and M. A. Qureshi, “Towards the
design of smart video-surveillance system,” in NASA/ESA Conference
on Adaptive Hardware and Systems (AHS). IEEE, 2018, pp. 162–167.

[43] A. Beghdadi, I. Bezzine, and M. A. Qureshi, “A perceptual quality-
driven video surveillance system,” in 23rd International Multitopic
Conference (INMIC). IEEE, 2020, pp. 1–6.

[44] A. Beghdadi, M. A. Qureshi, S. A. Amirshahi, A. Chetouani, and
M. Pedersen, “A critical analysis on perceptual contrast and its use in
visual information analysis and processing,” IEEE Access, vol. 8, pp.
156 929–156 953, 2020.

[45] E. Kalalembang, K. Usman, and I. P. Gunawan, “Dct-based local
motion blur detection,” in International Conference on Instrumentation,
Communication, Information Technology, and Biomedical Engineering.
IEEE, 2009, pp. 1–6.

[46] X. Min, G. Zhai, J. Zhou, M. C. Q. Farias, and A. C. Bovik, “Study
of subjective and objective quality assessment of audio-visual signals,”
IEEE Transactions on Image Processing, vol. 29, pp. 6054–6068, 2020.

[47] J. Choi, J. Park, and I. S. Kweon, “Self-supervised real-time video
stabilization,” arXiv preprint arXiv:2111.05980, 2021.

[48] M. K. Ali, S. Yu, and T. H. Kim, “Deep motion blind video stabilization,”
arXiv preprint arXiv:2011.09697, 2020.

[49] Z. Shi, F. Shi, W.-S. Lai, C.-K. Liang, and Y. Liang, “Deep online fused
video stabilization,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2022, pp. 1250–1258.

[50] Y.-T. Chen, K.-W. Tseng, Y.-C. Lee, C.-Y. Chen, and Y.-P. Hung,
“Pixstabnet: Fast multi-scale deep online video stabilization with pixel-
based warping,” in 2021 IEEE International Conference on Image
Processing (ICIP). IEEE, 2021, pp. 1929–1933.

[51] Y.-L. Liu, W.-S. Lai, M.-H. Yang, Y.-Y. Chuang, and J.-B. Huang,
“Hybrid neural fusion for full-frame video stabilization,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 2299–2308.

[52] M. Zhao and Q. Ling, “Pwstablenet: Learning pixel-wise warping maps
for video stabilization,” IEEE Transactions on Image Processing, vol. 29,
pp. 3582–3595, 2020.

[53] S. Liu, P. Tan, L. Yuan, J. Sun, and B. Zeng, “Meshflow: Minimum la-
tency online video stabilization,” in Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VI 14. Springer, 2016, pp. 800–815.

[54] L. Zhang, Q.-Z. Zheng, H.-K. Liu, and H. Huang, “Full-reference
stability assessment of digital video stabilization based on riemannian
metric,” IEEE Transactions on Image Processing, vol. 27, no. 12, pp.
6051–6063, 2018.

[55] Q. Rao, X. Yu, S. Navasardyan, and H. Shi, “Sim2realvs: A new
benchmark for video stabilization with a strong baseline,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2023, pp. 5406–5415.

[56] M. Sarıgül, “A survey on digital video stabilization,” Multimedia Tools
and Applications, pp. 1–27, 2023.

69



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Improving Viewer Training in Visual Assessment 
 

Mathias Wien 
Lehrstuhl für Bildverarbeitung 

RWTH Aachen University 
Aachen, Germany 

wien@lfb.rwth-aachen.de 

Vittorio Baroncini 
VABTech 

London, UK 
baroncini@gmx.com 

 

Abstract— Subjective assessment in the context of video 
compression performance evaluation measures the im-
pairment or the quality of the observed video by the mean 
opinion score provided by naïve viewers. In a recent up-
date of Recommendation ITU-R BT.500-14, this concept 
has been extended to expert viewers. Experts, who often 
have strong opinions on specific artifacts, provide wider 
confidence interval values than naïve viewers; this im-
plies, therefore, a reduced ability to rank the results. This 
paper presents a new training procedure for viewers, aim-
ing to reduce the spread of ratings either due to strong 
personal opinions (i.e., those most likely from expert view-
ers) or to hesitation in performing a new task (i.e., those 
most likely from naïve viewers). The new design of the 
training session includes suggesting of the expected range 
of scores, thereby helping the viewer to achieve a more 
consistent understanding of the scoring scale. In our ex-
periment we apply the DSIS (Double Stimulus Impair-
ment Scale) / DCR (Degradation Category Rating) test 
protocols. The same video clips were assessed by expert 
viewers both with and without the new training method, 
as well as by naïve viewers in a laboratory test. The anal-
ysis of the results shows a promising consistency in the re-
sults of the different tests. 

Keywords—Subjective assessment, viewer training, DSIS, 
DCR 

I. INTRODUCTION 

Subjective assessment is the established tool for determin-
ing the compression performance of video coding technology. 
Whereas objective metrics are frequently used in the develop-
ment process due to their easy computation and reproducibil-
ity, the mean opinion score determined by formal subjective 
assessment provides the most reliable indication on the actual 
compression impact. Recommendation ITU-R BT.500-14 [1] 
includes the specification of subjective assessment with expert 
viewers; this approach has been demonstrated to be efficient 
and reliable. The design of compact and efficient tests with or 
without expert viewers is an active field of research, see. e.g. 
[2]. One characteristic of the expert tests is typically found in 
large confidence intervals (CIs). This can be partially at-
tributed to the fact that experts show stronger opinions on spe-
cific artifacts. Since overlapping CIs for competing coding 
schemes imply an unclear interpretation of the results, achiev-
ing consistent test results with narrow confidence intervals in 
this process is desirable. The ability to achieve such improved 
results is of high importance especially when used in the con-
text of tool evaluation in the development process of video 
coding standards. 

In this paper, the impact of using different training meth-
ods for the subjective assessment is studied. The goal is to po-
tentially develop enhanced training methods for the purpose 

of visual assessments with expert or naïve viewers. Expert 
viewing sessions are, e.g., frequently performed the context of 
video coding tool development by the Joint Video Experts 
Team (JVET) of ISO/IEC and ITU-T. Improved viewing 
methods providing results with small CIs would be of great 
benefit in this context. 

To study the impact of the training method, three different 
visual assessments were performed on a set of compressed 
video clips: Two expert viewing tests using different training 
methods were conducted at a meeting with international ex-
perts. A formal test with naïve viewers was conducted in a la-
boratory setting. The details and context of this test as well as 
the tested coding schemes can be found in [4][5]. This paper 
builds upon [6] with an extended analysis, specifically includ-
ing a study of the relation between the tests with naïve and 
expert viewers. The description of the modified training 
method is presented in [6] and is replicated in the context of 
this paper. 

The remainder of this paper is organized as follows: In 
Section II the test setup of the different tests is described, in-
cluding logistics, test set, and test methodology and design. 
Section III details the modified training method. In Section IV, 
the results of the tests are analyzed, and a discussion is pro-
vided. Section V concludes the paper. 

II. TEST SETUP 

A maximum number of 24 viewers participated in the tests 
at the meeting site as well as the laboratory. One on-site expert 
viewing was performed with 12 viewers, using a subset of 
video sequences of the laboratory test and applying the modi-
fied training procedure. In the remainder of this paper, the tests 
are denoted as follows: 

- EXP1: Expert viewing test with normal training and 
24 viewers; 

- EXP2: Expert viewing test with modified training and 
12 viewers; 

- LAB: The laboratory test with 24 naïve viewers and 
modified training. 

The LAB viewers were checked for visual acuity and nor-
mal color vision. Experts in EXP1 and EXP2 were requested 
to only volunteer under the condition of corresponding capa-
bility. It is noted that the number of viewers in EXP2 is lower 
than intended for the purpose of this study. Participation in the 
experiment was on a voluntary basis among the experts pre-
sent on-site at the meeting and a higher number of participants 
could not be gained at the given point in time. 8 experts par-
ticipated in both, EXP1 and EXP2. Despite the low number of 
participants, the results are considered to be worth publishing. 
Future work will include extended studies with higher num-
bers of viewers. Note that EXP1 and LAB include sessions for 
both, UHD and HD resolutions. The focus in this paper is on 
EXP2 which focuses on UHD. 
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A. Logistics 

1) On-site setup for expert viewing 
At the meeting site, two identical setups were employed 

with three viewers placed in front of each screen. These in-
cluded a PC with a Decklink video board for an HDMI con-
nection and SSD drives capable of stable playout of the raw 
YUV data at the required frame rate. The test setup is summa-
rized in the upper part of Table II. All volunteering experts 
confirmed visual acuity and normal color vision.  

2) Laboratory setup 
The laboratory setup is summarized in the lower part of 

Table II. The viewers, aged between 19 and 24, were checked 
for acuity and color blindness (18 females, 6 males). 

B. Test sequences and rate points 

The full tests included both UHD and HD test sequences 
which were assessed in the experiments EXP1 and LAB. 
Since EXP2 only used the UHD sequences, the focus of this 
paper is on this test set. 

The test sequences used in the experiments are reported in 
Table I. All test sequences are of UHD resolution 
(3840×2160 pixels) and of 10 s length. The uncompressed 
YUV files were encoded using the random-access encoder 
configuration for the employed JVET reference software 
packages [8][9]. For each test sequence, a set of four rate 
points was determined in pre-experiments to cover a wide 
range of visual quality. Since the JVET focus for the tests was 
on the comparison of the VVC reference software (VTM) and 
the emerging Enhanced Compression model (ECM), the 
ECM performance was used for determining the rate points.  
These experiments are reported in [4]. The corresponding 
VTM bitstreams were generated allowing for a one-time QP 
switch (QP+=1) during encoding of the test sequence to 
match the VTM bitrate to the ECM. The switching points 
were chosen such that the ECM rate should never be higher 
than the VTM rate and that the distance should not exceed 
about 2% of the VTM rate. This approach corresponds to the 
method, e.g., used in the context of the call for proposals for 
VVC [7]. As an additional comparison point, VVenC [11] 
bitstreams were added to the tests, using rate matching with 
2-pass encoding and rate control, thus enabling very close 
matching of the rate points. For details of the chosen quantiz-
ers and the QP switching points applied in the VTM simula-
tions, the reader is referred to [5][6]. 

C. Test method and test design 

The Degradation Category Rating (DCR) method was ap-
plied for the subjective evaluation [12]. The test sequences 

were evaluated using the 11-grade scale as specified in Rec. 
ITU-R BT.500-14 [1], shown in Fig. 1. Each basic test cell 
(BTC) is structured as follows: Text “Original” (1sec) - [un-
compressed sequence] (10sec) - Text “A” (1sec) - [PVS] 
(10sec) - Text “Vote <N>” (5sec).  

Here, PVS denotes the processed video sequence under 
evaluation. 

1) On-site tests 
For EXP1, a total of 6 test sessions were designed: three 

for the UHD sequences and three for additional HD sequences 
which are not further considered in this paper. All test sessions 
included a stabilization phase of three BTCs. The scores of the 
stabilization phase were not regarded in the evaluation. The 
session duration was chosen to be no longer than 13 minutes 
(with a maximum of 24 votes) to avoid the impact of fatigue. 
Furthermore, the test sessions included trapping BTCs where 
the original uncompressed sequence was shown for evalua-
tion. For EXP1, the participating experts were trained with one 
training session for UHD resolution (8 votes) and one session 
for HD resolution (7 votes). All test sequences under evalua-
tion occurred at least once in the training sessions, and a se-
lection of rate points representing the expected impairment 
range was presented for both resolutions. Before the presenta-
tion of the training sessions, the experts were instructed on the 
meaning of the impairment scale. Any occurring requests or 
questions on the test procedure or the scale were answered. 
The experts were advised to calibrate their personal voting 
scale during the training sessions and apply it in the actual test 
sessions. 

The UHD and HD test sessions were both presented with 
a viewing distance of 1.5H from the UHD display for the cen-
ter seat. The HD sequences were displayed without scaling in 
the center of the UHD area with a mid-gray padding around 
them. Thus, an effective 3H viewing distance for the HD con-
tent was achieved. 

Experiment EXP2 used the same session design with a 
maximum duration of 13 minutes and used similar trapping 

TABLE II.  TEST SETUP AT THE MEETING SITE (TOP). TEST SETUP AT 
THE LABORATORY SITE (BOTTOM) 

Test Site On-site  
Display 2× LG 65” E9, HDMI (3840×2160) 
Viewing distance 3 viewers at 1.5H 
Viewing angle ±75°, 90° (at screen center) 
Viewers EXP1 24 (4 female, 20 male) 
Viewers EXP2 12 (3 female, 9 male) 

 

Test Site Laboratory 
Display LG 65” CX6LA, HDMI (3840×2160) 
Viewing distance 1.5H 
Viewing angle 90° (at screen center) 
Viewers 24 (18 females, 6 males) 

 

TABLE I.  TEST SEQUENCES. 

Configuration Sequence name Frame rate 

UHD RA Campfire 30 

UHD RA CatRobot1 60 

UHD RA DaylightRoad2 60 

UHD RA DrivingPOV3 60 

UHD RA Marathon2 30 

UHD RA MountainBay2 30 

 

 
Fig. 1. Meaning of the 11 grade numerical scale as specified in Rec. ITU-
R BT.500-14 Table 2-4. 
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sequences as in EXP1. The viewing sessions were redesigned 
compared to EXP1 including a different randomization. 

2) Laboratory tests 
In the laboratory test, two test sessions for HD and three 

test sessions for UHD three were designed. Each test session 
included a three-BTC stabilization phase, with the scores be-
ing discarded before evaluation. The five test sessions were all 
made of 27 BTCs, for a test length of less than 12 minutes. 
One test point comparing reference vs. reference was included 
for each session. This allowed a check of the consistency of 
the test results and viewers’ behavior. 

Two training sessions were run, one for each resolution. In 
the training sessions all test sequences occurring in the actual 
test were shown at different compression rates to provide an 
overall indication of the impairments. After a general descrip-
tion of the experiment, the training was performed according 
to the method described below. The test was done using the 
DSIS test protocol, as described in Recommendation ITU-R 
BT.500-14. An degradation scale with 11 levels was used; the 
meaning of each impairment level was explained as found in 
Fig. 1.  

III. MODIFIED TRAINING METHOD 

A. Context 

When a visual assessment of video is required, the proce-
dure is a key aspect in the achievement of reliable and usable 
results. An important part of the procedure is the training of 
the volunteers participating in the experiment. Traditional 
training strategies were based on reading of an explanatory 
text followed by a short training test session; the training ses-
sions were not permitted to include any test sequences used in 
the actual test; questions were allowed at the end of the train-
ing sessions. This approach showed strong limitations as the 
standard deviation of the data produced by the participants in 
the experiment is typically large and thereby, led to a reduc-
tion of the ability to rank the test points according to the re-
sulting MOS scores.  

More recent training strategies permitted the use of test se-
quences used in the actual test, and a deep and accurate de-
scription of the possible impairments when the training ses-
sion was run. The content of the training session included as 
many visual quality cases as possible, which were able to 
cover the whole quality range foreseen in the experiment. This 
approach produced a significant improvement in the results by 
lowering the standard deviation (and, consequently, the confi-
dence interval, CI), and, thereby, providing a higher discrimi-
nation capability for the visual assessment. 

When expert viewing (i.e., a visual assessment performed 
by experts in the field of video coding instead of naïve view-
ers) was introduced, the training phase was initially consid-
ered to be less important. However, the results revealed a high 
level of standard deviation values. Based on this observation, 
the training for the expert viewers was refined, mainly devoted 
to providing an accurate description of the organization and 
structure of the experiment (i.e., what is shown and when and 
how to express the scores). Nonetheless, the values of the 
standard deviation in expert viewing experiments remained 
higher, when compared with those obtained from the same test 
with naïve viewers. 

These observations motivate the redesign of the training 
procedures. This matter has not been resolved so far and re-
mains a matter of further study. One possible approach to im-
prove on the above-mentioned problems is described below. 

B. Description 

First, a set of “ground truth” MOS (mean opinion score) 
values is prepared for each test case to be used in the training 
sessions; the “ground truth” MOS values are prepared by the 
test administrators. The set of “ground truth” MOS values de-
lineates an “ideal” visual assessment as a guideline for the 
viewers.  

The training session is edited by modifying the BTCs 
shown during the training session: At the end of the voting 
period, the “ground truth” MOS value is disclosed. The test 
administrator comments on the presented value by the ex-
plaining that the shown score is the one suggested for a correct 
evaluation of that PVS.  

This approach was applied for the training in the LAB 
tests. For the tests in EXP2, the corresponding “ground truth” 
MOS values taken from the expert viewing sessions of the 
tests in EXP1 which was conducted and evaluated before the 
beginning of the EXP2 tests. A training session with 9 BTCs 
was designed with examples of VTM and ECM bitstreams 
covering all test sequences occurring in the viewing sessions. 
It is important to note that in any case, no guidance on specific 
sequence details or what to look for is provided to the viewers. 

IV. RESULTS AND ANALYSIS 

In this section, a comparison of the MOS results achieved 
in the three different experiments is presented. The actual 
MOS corresponding CI values are available in [5][6]. MOS 
and CI are computed according to ITU-R BT.500 [1]. 

A. Data processing for EXP1 

In one test session, a playout problem with one of the two 
PCs occurred for one test sequence. The affected experts were 
presented the missing BTCs in a separate session to complete 
their votes.  

In a first evaluation step, the participants votes were screened 
with respect to the trapping BTCs. In a total of 6 cases, view-
ers voted below score of 8 for the original. In each case, the 
results of the session including this trapping BTC were not 
regarded for the affected viewer. As a second step, the outlier 
screening, according to ITU-R BT.500-14 A1-2.3.1 [1], was 
applied. Based on this, the scores of one participant were re-
moved from the set. In a final processing step, isolated outli-
ers, which were considered to be obvious errors, were re-
moved. 

B. Data processing for EXP2 

The scores were first screened for the trapping BTCs. The 
viewers consistently scored the originals with a MOS score of 
9 or 10, with only two votes giving a score of 8. The Pearson 
correlation coefficient of the viewers was in the range of 0.89 
to 0.97 with an average value of 0.94. Based on these findings, 
no further outlier processing was applied. 

C. Data processing for LAB 

Due to issues with the bitstreams at the highest and lowest 
rate point of the DrivingPOV3 sequence which were available 
for the LAB tests, the results for these points were discarded. 
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A statistical analysis (Pearson correlation) was done on the 
raw scores to verify the viewers’ behavior. No viewer had to 
be excluded from the evaluation based on trapping BTCs. 
Only a few (6 out of 1920 scores) outliers in the raw data were 
discarded.  

D. Comparison of MOS results 

In order to study the relation of the MOS values resulting 
from the three tests, EXP1, EXP2, and LAB, scatter plots are 
provided where the MOS values of two of the tests are ar-
ranged along the abscissa and ordinate, respectively. The plots 
comparing the two expert viewing tests are presented in Fig. 
2. The plots comparing EXP1 and EXP2 to LAB are provided 
in Fig. 3 and Fig. 4, respectively. Since MOS results for the 
VTM bitstreams have been evaluated in all tests, these are re-
ported for all sequences. The MOS results for the VVenC bit-
streams are reported for EXP2 and LAB since these were not 
evaluated in EXP1. The linear trendline for the VTM points is 
plotted as a blue dashed line. The trendline for the VVenC 
points is plotted in orange for the applicable cases. Further, the 
confidence interval on the corresponding axis is indicated for 
each data point. The line of slope 1 is added to the diagrams 
in red to mark the location of a theoretically ideal match be-
tween the two tests. 

The Pearson correlation coefficient (PCC) and the Spear-
man rank order coefficient (SRCC) between the MOS scores 
of the three tests are provided in Table III. For computation of 
the coefficients, the full set of comparable data is used, i.e., 

both VTM and VVenC MOS scores for computing the corre-
lation of LAB and EXP2, and only the VTM scores when 
computing the correlation of EXP1 and either EXP2 or LAB. 

E. Discussion 

The scatter plots comparing EXP1 and EXP2 reveal a con-
sistent pattern of the MOS scores resulting from the two expert 
viewing tests. The PCC and the SRCC between EXP1 and 
EXP2 have a value of 0.98. For all test sequences, the trend-
line of the data points is close to the main diagonal. Out of a 
total of 28 data points, 19 points have an overlap of the CIs for 
both axes with the main diagonal. In three cases, only one of 
the CIs overlaps, and in six cases, the CIs do not overlap with 
the main diagonal. Based on these observations we conclude 
that the results are consistent for both tests. When comparing 
the confidence intervals by size, in many cases a very similar 
CI is observed. When computing the ratio between the CIs of 
data points from EXP1 and EXP2, a ratio range of 0.5 to 1.59 
is observed, with an average of 1.04 and a standard deviation 
of 0.25. These results suggest that a comparable confidence 
has been achieved with only half of the number of expert 
viewers. Taking into consideration the effort of conducting ex-
pert viewing tests, this result is taken as an encouraging indi-
cation to further study and potentially refine the modified 
training method.  

The scatter plots comparing the results of the expert view-
ing tests to the laboratory tests show a similar pattern. The 
PCC for both, LAB vs. EXP1 and LAB vs. EXP2, is equal to 
0.97. The SRCC for LAB vs. EXP1 is 0.96 and the SRCC for 
LAB vs. EXP2 is 0.95. Here, the correlation coefficients for 
LAB vs. EXP2 are computed using the full set of VTM and 
VVenC data. When studying the scatter plots, it is observed 
that the expert viewers scored more critically than the naïve 
subjects especially in the lower quality range. Still, a quite 
consistent scoring behavior is observed for both the LAB-

TABLE III.  CORRELATION COEFFICIENTS BETWEEN THE TESTS 

Correlation coefficient PCC SRCC 

EXP1-EXP2 0.98 0.98 

LAB-EXP1 0.97 0.96 

LAB-EXP2 0.97 0.95 

   

   
Fig. 2. Scatter plots comparing the MOS results of EXP1 and EXP2. 
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EXP1 and the LAB-EXP2 comparison. For the VVenC curve 
of the Campfire sequence in the LAB-EXP2 comparison, a 
saturation effect is noted for the expert viewers while the naïve 
viewers continue to show differentiating MOS values. At the 
same time, the results for the lower VVenC rate points are 
quite consistent between the expert and the naïve viewers. 
These observations are considered to potentially stem from 
differences in the setup, especially since test room for the on-
site tests was not at the same level as the laboratory room. For 
the test sequence DrivingPOV3, only the two middle rate 
points are evaluated for the VTM bitstreams, as discussed ear-
lier. In general, the CIs for the experiments with the naïve 
viewers are considerably smaller than the CIs of the expert 
viewing tests. The observed ratio range for the CIs in the 
LAB-EXP1 comparison is between 1.05 and 4.06 with an av-
erage of 2.98 and a standard deviation of 0.74. For the LAB-
EXP2 comparison, the range is 1.11 to 5.34 with an average 
of 3.05 and a standard deviation of 0.99. 

V. CONCLUSIONS 

This paper presents a comparison of MOS scores resulting 
from three tests using DCR conducted on the same data set: 
An on-site expert viewing, an on-site expert viewing using a 
modified training procedure, and a test with naïve viewers us-
ing the modified training procedure in the controlled environ-
ment of the laboratory. The results of the expert viewing tests 
suggest that the new proposed training procedure is function-
ing. Comparable CI values with half the number of viewers 
are observed. The results of both expert viewing tests are 
found to be consistent with the results of the formal test done 
with naïve viewers, further confirming the validity of this pro-
tocol. We suggest to further study the modified training 
method as a potential improvement for the established 
DSIS/DCR test protocols. This includes conducting more tests 
with the new protocol in a laboratory environment and with a 
higher number of expert viewers. 
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Abstract—In line with the human capacity to perceive
the world by simultaneously processing and integrating high-
dimensional inputs from multiple modalities like vision and
audio, we propose a novel model, MAiVAR-T (Multimodal
Audio-Image to Video Action Recognition Transformer). This
model employs an intuitive approach for the combination of
audio-image and video modalities, with a primary aim to esca-
late the effectiveness of multimodal human action recognition
(MHAR). At the core of MAiVAR-T lies the significance of
distilling substantial representations from the audio modality
and transmuting these into the image domain. Subsequently,
this audio-image depiction is fused with the video modality
to formulate a unified representation. This concerted approach
strives to exploit the contextual richness inherent in both audio
and video modalities, thereby promoting action recognition. In
contrast to existing state-of-the-art strategies that focus solely
on audio or video modalities, MAiVAR-T demonstrates superior
performance. Our extensive empirical evaluations conducted on
a benchmark action recognition dataset corroborate the model’s
remarkable performance. This underscores the potential en-
hancements derived from integrating audio and video modalities
for action recognition purposes. To ensure transparency and
reproducibility of our work, the source code is made publicly
available at https://bit.ly/43do8DH.

Index Terms—Multimodal Fusion, Transformers, Human Ac-
tion Recognition, Deep Learning.

I. INTRODUCTION

Human action recognition has become a critical task in
various fields such as surveillance [1], robotics [2], interactive
gaming [3], and health care [4]. Traditionally, most approaches
have focused on visual cues [5]. However, human actions
are not limited to visual manifestations; they also consist of
rich auditory information [6]. Accordingly, Multimodal human
action recognition (MHAR) that incorporates both visual and
audio cues can provide more comprehensive and accurate
recognition results [7].

Despite these promising prospects, the performance of
current MHAR models is hampered by challenges of multi-
modal data fusion. Existing methods, including Convolutional
Neural Networks (CNNs) [8]–[10] require significantly more
computation than their image counterparts, some architec-
tures factorise convolutions across spatiotemporal dimensions.
Contrastingly, Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTMs) [11] have demonstrated con-
straints in processing large sequences, memory efficiency and
parallelism.

In this paper, we propose a novel transformer-based model,
Multimodal Audio-image and Video Action Recognizer us-
ing Transformers (MAiVAR-T). Our approach capitalizes on
the self-attention mechanism inherent in transformers [12]
to extract relevant features from both modalities and fuse
them effectively. The proposed MAiVAR-T model outperforms
state-of-the-art MHAR models on benchmark datasets [13],
demonstrating the potential of transformer-based architectures
in improving multimodal fusion and recognition accuracy.

To summarize, the contributions made in this paper are:
• A new feature representation strategy is proposed to select

the most informative candidate representations for audio-
visual fusion;

• Collection of effective audio-image-based representations
that complement video modality for better action recog-
nition are included;

• We apply a novel MAiVAR-T framework (see Fig. 1) for
audio-visual fusion that supports different audio-image
representations and can be applied to different tasks; and

• State-of-the-art results for action recognition on the
audio-visual dataset have been reported.

The remainder of the paper is organized as follows: we
begin with a review of related works on MHAR (Section II),
followed by a detailed discussion of the proposed methodology
(Section III). We then present the experimental setup (Section
IV) and report the results (Section V). Finally, we concludes
the paper with future directions (Section VI).

II. RELATED WORK

A. Deep Learning for MHAR

Recently, deep learning models have shown remarkable
results in MHAR [14]. They are capable of automatically
learning a hierarchy of intricate features from raw multimodal
data, which are beneficial for action recognition tasks.

CNNs have been widely adopted for MHAR to automati-
cally extract spatial features from input data [15], and LSTMs
are typically used for modelling the temporal dynamics of
actions [11]. However, the traditional combination of CNNs
and LSTMs for MHAR faces challenges such as ineffective
multimodal fusion and difficulty handling long temporal se-
quences.

Transformers, introduced by Vaswani et al. [12], have
demonstrated their superiority in many fields like natural

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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Fig. 1: The proposed framework contains two stages. The first stage extracts the features influencing the recognition while
the second stage performs classification on the fused features. The input sequence consists of image and audio-image patches.
These are then projected into tokens and appended to special CLS (classification). Our transformer encoder then uses self
attention to model unimodal information, and send cross-modal information flow through to fusion network.

language processing [16], image classification [17], and video
understanding [18]. The self-attention mechanism through
its optimal complexity (see Table I) in transformers could
potentially enhance the capability of feature extraction and
multimodal fusion in MHAR tasks. However, the utilization of
transformers in MHAR is relatively unexplored and demands
further investigation.

B. Audiovisual Learning and Fusion

The field of audiovisual multimodal learning has a long and
diverse history, both preceding and during the deep learning
era [19]. Early research focused on simpler approaches, utiliz-
ing hand-designed features and late-stage processing, due to
limitations in available data and computational resources [20].
However, with the advent of deep learning, more sophisticated
strategies have emerged, enabling the implicit learning of
modality-specific or joint latents to facilitate fusion. As a
result, significant advancements have been achieved in various
supervised audiovisual tasks [21].

It is common to jointly train multiple modality-specific
convolution networks, where the intermediate activations are
combined either through summation [22]. On the other hand,
in transformer-based architectures, the incorporation of Vi-
sion Transformers (ViT) [17] and Video Vision Transformers
(ViViT) [18] has brought about significant advancements in
multimodal human action recognition. Initially, ViT proved
instrumental in dissecting images into smaller segments, to
interpret these patches as a sequence for more accurate image
understanding. This ability greatly improved the recognition
and classification of human actions within still images. The
introduction of ViViT further extended this capacity, applying
transformer techniques to analyze video data. By process-
ing sequences of video frames, ViViT effectively interprets

TABLE I: Complexity comparison for different types of layer.
Notations: n : sequence length, d: representation dimension,
k kernel size.

Layer Type Complexity
per layer

Sequential
Operations

Maximum
Path Length

Convolutional O(k · n · d2) O(1) O(logk(n))
Recurrent O(n · d2) O(n) O(n)
Self-Attention O(n2 · d) O(1 O(1)

TABLE II: Hyper-parameters of the network.

Parameter Value
Batch size 256
Initial learning rate 0.001
lr decay (every 4 epochs) 0.10
Learning rate patience 10
Epochs 100

the spatio-temporal dynamics involved in human movements.
Together, the use of Vision Transformers and Video Vision
Transformers can produce a shift in multimodal human action
recognition, enhancing the capability of systems to accurately
classify and understand complex human activities across visual
and audio domains.

III. PROPOSED METHODOLOGY

Data Collection: We collected human actions from a
benchmark dataset called UCF101 [13], with each instance
containing video clips and their corresponding audio streams.
UCF-101 contains an average length of 180 frames per video.
We observed that half of the videos in the dataset contained no
audio. Thus, in order to focus on the effect of audio features,
we used only those videos that contained audio. This resulted
in 6837 videos across 51 categories. Whilst this led the dataset
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(a) (b)

Fig. 2: Image patches (a) Audio-image representation, (b)
RGB video frame.

to be significantly reduced, the distribution of the audio dataset
was similar to the video dataset. We used the first train-test
split setting provided with this dataset, which resulted in 4893
training and 1944 testing samples. We reported the top 1
accuracies obtained by training on split 1.

Data Preprocessing: The video and audio data were prepro-
cessed separately, as described in the following subsections.
The video data was transformed into frames, while the au-
dio data was converted into six audio-image representations
following [14], [23]. Standard normalization techniques were
applied to both modalities.

Audio image representations: Following are some of the
key characteristics of audio-image representations (shown in
Figure 3).

• Audio image representations provide a significant reduc-
tion in dimensionality. For example, spectral centroid
images represent the frequency content of the audio signal
over time, which is a lower-dimensional representation
of the original video dataset. This can make it easier and
faster to process the data and extract meaningful features.

• Audio images are based on the audio signal, which
is less affected by visual changes, such as changes in
lighting conditions or camera angles. This makes these
representations more robust to visual changes and can
improve the accuracy of human action analysis.

• Standardization as audio images can be standardized to
a fixed size and format, which can make it easier to
compare and combine data from diverse sources. This
can be useful for tasks such as cross-dataset validation
and transfer learning. Hence, this dataset can serve as
a standard benchmark for evaluating the performance of
different machine-learning algorithms for human action
analysis based on audio signals.

• Suitable for privacy-oriented applications such as surveil-
lance or healthcare monitoring, which may require the
analysis of human actions without capturing the original
visual information.

Architecture: The MAiVAR-T model comprises an audio
transformer, a video transformer, and a cross-modal attention
layer. The transformers process the audio and video inputs

(a) Waveplot

(b) Spectral Centroids

(c) Spectral Rolloff

(d) MFCCs

(e) MFCCs Feature Scaling

(f) Chromagram

(g) Video input

Fig. 3: Segmented video input and six different audio-image
representations of the same action.
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Fig. 4: Positional embeddings.

separately, after which the cross-modal attention layer fuses
the outputs. Finally, a classification layer predicts the action
present in the input data.

Audio Stream: The audio stream uses Vision Transformer
(ViT) [24] to process 2D images with minimal changes. In
particular, ViT extracts N non-overlapping image patches,
xi ∈ Rh×w, performs a linear projection and then rasterises
them into 1D tokens zi ∈ Rd. The sequence of tokens input
to the following transformer encoder is

z = [zcls,Ex1,Ex2, ..., ExN ] + p, (1)

where the projection by E is equivalent to a 2D convolution.
In addition, a learned positional embedding, p ∈ RN×d ,
is added to the tokens to retain positional information, as
the subsequent self-attention operations in the transformer are
permutation invariant. The tokens are then passed through an
encoder consisting of a sequence of L transformer layers.
The MLP consists of two linear projections separated by a
GELU non-linearity and the token-dimensionality, d, remains
fixed throughout all layers. Finally, a linear classifier is used
to classify the encoded input based on zLcls ∈ Rd, if it was
prepended to the input, or a global average pooling of all the
tokens, zL, otherwise. As the transformer [12], which forms
the basis of ViT [17], is a flexible architecture that can operate
on any sequence of input tokens z ∈ RN×d, we describe
strategies for tokenising videos next.

Video Feature Stream: We consider mapping a video V ∈
RT×H×W×C to a sequence of tokens z′ ∈ Rnt×nh×nw×d. We
then add the positional embedding and reshape into RN×d to
obtain z, the input to the transformer.

IV. EXPERIMENTS

A. Audio preprocessing

Each audio image representation was broken into patches
as illustrated in the examples shown in Figure 2. For spatial

context, positional embeddings for each input were projected
into the architecture (see Figure 4). An internal schematic
of the transformer model has been illustrated in Figure 5.
Training data was batched into mini-batches of 16 instances
each. Augmentation techniques like random cropping and
time-stretching were applied to increase model robustness.

B. Video preprocessing

Following [18], the features extracted are then fed to the
multimodal fusion module (AV-Fusion MLP) which later per-
forms the classification for each action class.

C. Training

We utilized a multimodal cross-entropy loss function for
training, balancing both audio and video modalities. The
network hyperparameters are reported in Table II.

Hardware and Schedule: The training was performed on a
high-performance computing cluster, equipped with GeForce
GTX 1080 Ti GPUs. We trained the transformer-based model
for 100 epochs, with a learning rate (α) schedule that de-
creased the rate by 10% every 4 epochs. Optimizer: The
Adam optimizer [25] was used due to its effectiveness in
training deep networks. Regularization: Dropout techniques
[26] were applied to prevent overfitting during training.

V. RESULTS

To assess the contribution of each component in our model,
we performed an ablation study. Results demonstrate that both
the audio and video transformers, as well as the cross-modal
attention layer, contribute significantly to the final action
recognition performance. The process of attention mecha-
nism in the extraction of features through robust audio-image
representations could be visualized in Figures 6 and 7. We
have used an accuracy metric that measures the proportion of
correct predictions made by the model out of all the predictions
and defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

where TP are the correctly predicted positive values. TN are
the correctly predicted negative values. FP , also known as
Type I errors, are the negative values incorrectly predicted as
positive. FN , also known as Type II errors, are the positive
values incorrectly predicted as negative.

Table III compares the performance of transformer-based
feature extractors with CNN-based counterparts. Proposed
MAiVAR-T outperforms prior methods by a +3% as presented
in Table IV.

VI. CONCLUSION

Over the past decade, Convolutional Neural Networks
(CNNs) with video-based modalities have been a staple in the
field of action video classification. However, in this paper, we
challenge the indispensability of video modalities and propose
a transformer-based multi-modal audio-image to video action
recognition framework called Multi-modal Audioimage-Video
Action Recognizer using Transformers (MAiVAR-T). This
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Fig. 5: Schematic of Vision Transformer Encoder.

Fig. 6: Attention matrix for an audio-image representation.

TABLE III: Test accuracy of different audio repre-
sentations with CNN and transformer-based backbones
(InceptionResNet-v4(IRV4) and Vision Transformer (ViT) re-
spectively)

Representation IRV4 ViT
Waveplot 12.08 19.7 (+7)

Spectral Centroids 13.22 28.65 (+15)
Spectral Rolloff 16.46 26.85 (+10)

MFCCs 12.96 18.26 (+6)
MFCCs Feature Scaling 17.43 17.44 (+0.01)

Chromagram 15.48 19.08 (+3)

fusion-based, end-to-end model for audio-video classification
features a transformer-based architecture that not only simpli-
fies the model but also enhances its performance.

Fig. 7: Visualization of attention.

Experimental results demonstrate that our transformer-based
audio-image to video fusion methods hold their own against
traditional image-only methods, as corroborated by previous
research. Given the significant improvements observed with
pre-training on larger video datasets, there is considerable
potential for further enhancing our model’s performance. In
future work, we aim to validate the efficacy of integrating text
modality with audio and visual modalities. Furthermore, the
scalability of MAiVAR-T on large-scale audio-video action
recognition datasets, such as Kinetics 400/600/700 will be
explored. Additionally, we plan to explore better architectural
designs to integrate our proposed approach with more innova-
tive ideas, such as integrating generative AI-based transformer
architectures, into our network could provide valuable insights
into the impact of transformers on MHAR.
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TABLE IV: Classification accuracy of MAiVAR compared to
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2022 STA-TSN (RGB) [33] 82.1
2022 MAFnet [31] 86.72
2022 MAiVAR-WP [14] 86.21
2022 MAiVAR-SC [14] 86.26
2022 MAiVAR-SR [14] 86.00
2022 MAiVAR-MFCC [14] 83.95
2022 MAiVAR-MFS [14] 86.11
2022 MAiVAR-CH [14] 87.91
Ours MAiVAR-T 91.2
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Abstract—Anomaly detection in surveillance videos, particu-
larly related to human behavior, is crucial for various applica-
tions. In electronic exams (e-exams), cheating can be detected
using surveillance videos, but previous research mainly focused
on predefined patterns, with less attention given to unsupervised
methods. This study proposes a semi-supervised skeleton-based
approach for abnormal behavior detection in e-exam proctoring
videos. The proposed method segments the skeleton-based feature
vectors of consecutive frames based on their similarity. The
similarity is calculated based on the Euclidean distance between
the mean feature vector and the standard deviation of segments.
Similar segments of the training set, which is anomaly-free,
are then combined to form distinct frame segments used to
recognize the normal samples. Then, in the testing phase, a
frame is recognized anomaly if it is not similar to any training
segment, otherwise, it is considered normal. In addition, to get
a better ranking of anomalous frames, we examine assigning
a soft anomaly score considering the segment size and the
maximum distance between the comparative features. In label
assignment, the algorithm correctly categorizes the testing frame
based on their similarity to the training segments. In comparison
to the state-of-the-art reconstruction-based anomaly detection
algorithms, the proposed method outperforms using the area
under the ROC curve (AUC) metric. In addition to correctly
detecting similar frames and segmenting videos, the advantage
of the presented method is to determine the data labels without
needing to process all inputs, making it possible for use in online
applications.

Index Terms—Unsupervised Anomaly Detection, Skeleton-
based Features, E-Exam Cheating Detection, Skeleton Similarity
Measurement

I. INTRODUCTION

Anomaly Detection (AD) involves identifying instances and
events that occur scarcely in the available training data. In
other words, AD is the procedure of searching for concepts
that are not yet visited. AD in videos is a challenging issue in
computer vision, as identifying unusual events relies typically
on contextual information and the surrounding environment,
adding to the complexity of the task.

Unsupervised and semi-supervised learning methods are
best suited to anomaly detection tasks. Unsupervised methods
do not have any prior knowledge about data labels, and semi-
supervised approaches learn from only limited normal samples

of data. Their basis is the principle that normal events happen
several times while abnormal events occur infrequently.

In surveillance videos related to human behavior, extracting
body skeleton features provides a suitable solution for privacy
protection, and it reduces the complexity of methods, espe-
cially when the sole purpose is to detect abnormal behavior
in human actions. Skeleton-based methods [1] only focus
on body joints and ignore facial identity, full body scan, or
background information. So, these methods are insensitive
to noise resulting from illumination, viewing direction, and
background clutter, and they are released from the redundant
burden of modeling the changes in those areas of the scene.

One of the applications of behavioral anomaly detection
is in video proctoring of remote and electronic exams (e-
exams) to detect unauthorized behaviors and cheating events,
which is a challenging issue. Monitoring online examinations
through human proctors is a common methodology to prevent
cheating. However, the disadvantage of this method is the cost
borne to employ individuals to monitor the exams. There is a
high bandwidth requirement for communication in such cases,
and there is no metric to evaluate the proctor’s efficiency in
cheating detection. Semi-automated proctoring has also been
proposed in several research studies. In the recent review
paper [2], the authors categorize the automated proctoring
methods into six major groups, including Face Tracking,
Face Expression Detection, Head Posture Analysis, Eye Gaze
Tracking, Network Data Analysis and Traffic Classification,
and IP Spoofing Detection, which there is no room for body-
gesture-based methods. In [3] the authors incorporated the
hand position along with head roll and yaw angles extracted
by Microsoft Kinect camera. Similarly, other works in the
literature have mainly relied on predefined rules and thresh-
olding on extracted features such as head rotation angles [4]–
[8]. Regrettably, when dealing with a large group of students
having varying seating postures, this approach may not be
as successful [2]. In Addition, in past research, abnormal
behaviors have mostly been limited to specific predefined
patterns, and unsupervised or semi-supervised methods have
rarely been considered. Thus, in our viewpoint, a combination

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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of head and hand poses must be considered to recognize
cheating in addition to unsupervised detection methods .

This article examines the detection of behavioral abnormal-
ities among candidates in e-exam videos. Behavioral abnor-
malities refer to unusual behaviors exhibited by examinees
that may indicate cheating when answering exam questions.
The specific goal here is to detect behaviors that indicate
cheating behind the scenes of the video. Since the type of
abnormality is related to the candidate’s body postures and
movements, feature extraction based on the body skeleton
has been emphasized. This approach not only facilitates the
detection process, but also helps preserve participant’s privacy.
Additionally, the proposed method is a semi-supervised ap-
proach, since individuals’ abnormal behaviors during exams
vary greatly, while samples of normal behaviors can easily be
collected.

The proposed method works by first dividing the frame
sequence of the training videos into sequential segments
during the training phase. Then, similar segments are merged
to produce training clusters. To specify abnormality, we assign
either a distinct label (zero or one) or soft score (from
zero to one) to each frame. In the evaluation phase, the
similarity between skeleton-based features of each frame and
the segments recognized in the training set is measured, and
the maximum distance of each frame features, and the training
segments size are used to calculate the anomaly score. For
assigning an anomaly label, we use standard deviation criteria
such that if the distance of all skeleton features in the frame
under observation to the corresponding features in the mean
feature vector of a training cluster fall within the standard
deviation range, that frame is considered normal (labeled zero).

The proposed method is evaluated on a dataset consisting
of 91 mock e-exam videos. The initial part of each video
is used as training data. Two approaches are considered for
training. The Global approach uses the initial parts of all
videos in the dataset as a training set for cluster extraction.
The other is called Video-Specific, in which each video is
processed separately. While the initial part of each video
is used for training, the remaining part of the same video
is used for testing. Finally, the results are compared with
several semi-supervised anomaly detection algorithms. In label
assignment, the detection precision of the normal samples and
the recall of detecting abnormal samples are about 99%, that
is the algorithm correctly detects the similar testing samples
to the training clusters, but the precision of detecting ground-
truth abnormal samples is still low (about 20%). In terms of
soft scoring, the performance of the algorithm outperforms
the compared reconstruction-based anomaly detection algo-
rithms using the area under the ROC (AUC) metric. The
algorithm can be used to summarize human-oriented videos
based on the skeleton pose similarity. Another advantage of the
presented method over other semi-supervised reconstruction-
based anomaly detection methods is that it determines data
labels without the need to process all inputs, which makes it
possible to use it in online applications.

Section II, describes the collected dataset and extracted

skeleton-based features. Section III proposes the skeleton-
based video anomaly detection algorithm. IV presents the
results of the experiments and Section V concludes the paper.

II. DATASET AND FEATURE EXTRACTION

For the experiments of this paper, a dataset was collected
for the ultimate goal of detecting cheating in electronic exam
videos. It includes 91 videos from participants in mock remote
exams held for a maximum of 30 minutes. The videos of
this dataset are taken from the side camera view and show
the perfect situation of participants behind the computer desk.
Since most similar works have used the laptop viewing angle
(facing angle), the collected dataset is distinct because it
includes the hand and upper body posture. The video frames
were captured at a rate of 1 frame per second by the software
implemented for conducting remote exams. The video frames
were labeled based on the individual’s condition in the scene
concerning the presence of cheating. Sample frames from the
collected dataset are shown in Fig. 1. The skeleton features
extracted from the collected dataset and the implementation
codes are available on GitHub1. Participants were asked to
behave normally at the beginning of the exam so that it can
be used as the training set for semi-supervised methods. The
dataset can be expressed as follows.

Dataset = {Xi|i ∈ 1..Nd}, (1)

where Xi is the frame features of the video i, and Nd = 91
is the number of dataset videos. Xi contains the initial part
Xi

t and the remaining part Xi
v .

Xi = [Xit, Xiv],

Xit = {F i
k|k ∈ 0..N ti}, Xiv = {F i

k|k ∈ N ti..N i}
(2)

where F i
k is the skeleton-based feature vector of the frame k of

the video i, and N ti ≃ 0.3×N i denoating that approximately
the initial 30% of each video frames is considered without
any abnormalities. The MoveNet framework, implemented in
Tensorflow [9], was used to extract the 2D skeleton features
of the body. MoveNet extracts the 2D coordinates of each
skeleton joint within the normalized range of [0, 1]. This study
uses the 2D coordinates of upper body joints, including 11
positions of the nose, left eye, right eye, left ear, right ear, left
shoulder, right shoulder, left elbow, right elbow, left wrist, and
right wrist. Therefore, the basic features for each frame form a
vector of length 22. In addition to the 2D joint coordinates, this
paper also experiments with simplified feature vectors, which
consist of 6 features, including three significant points of the
body: nose, right wrist, and left wrist. The idea behind this
simplification is that perhaps for a human proctor, the location
of the wrists may be more important than the hand muscle
configuration. In other words, changing the hand position
without moving the wrist cannot have a specific meaning.
However, confirming the validity of this point requires further
investigation and experience.

1https://github.com/habibatabay/skeleton clustering anomaly
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Fig. 1. Sample frames of the videos of the collected dataset

(a) (b) (c) (d) (e)

Fig. 2. (a) The rotation axes of the head, (b) to (e) show the position of the nose (N) and the center of gravity of the head (C). b) is a normal head state, and
(c) to (e) are considered abnormal head poses. In (c) compared to (b), the position of N has changed both on the x-axis and in the y-axis (in 2D projected
space). (d) The biggest change is observable in the x-axis, and in (e) a small difference is observable in the x-coordinate. (b) to (c) show that the changes in
the coordinates of point N relative to C can indicate the change in the head pose.

Regarding the head, since the head posture or gaze direction
is of particular importance, raw nose coordinates are not suf-
ficient to show the head posture. For this reason, the position
of the nose with respect to the head’s center of gravity is
considered a feature. With this modification, the nose position
along the x-axis can indicate changes in the yaw angle, and
changes in the pitch angle can be indicated by the nose position
in height (y-axis) with respect to the center of gravity. The roll
angle is less computable due to the camera’s placement, and
of course, this angle is less important in detecting cheating.
Fig. 2 shows the head angles and postures in three different
positions. The average position between the two ear joints is
used to calculate the head’s center of gravity.

III. THE PROPOSED METHOD

Fig. 3 illustrates the overall process of the proposed anomaly
detection method. After extracting skeleton features from each
video frame, consecutive frames with similar skeleton poses
are grouped together (Fig. 3.a). The obtained segments from
the training video are merged based on their similarities (Fig.
3.b), and distinct poses are identified (Fig. 3.c). To detect
anomalous segments in the test video, its frames are first seg-
mented like the training video (Fig. 3.d), and segments that do
not have similarities to the identified segments in the training
phase are considered as anomalous segments. The core idea of
the proposed method is the similarity measurement between
skeleton poses, which is calculated in two modes: Label and
Score. In the Label mode, we determine the similarity with
a binary label of either zero or one. However, in the Score
mode, we assign a score between zero and one. The similarity
label, SLij , between two segments, i and j, can be expressed
as follows:

SLij =

 1 :
Dij

k < (SDi
k + sd) or Dij

k < (SDj
k + sd)

∀k ∈ 1..Nf

0 : otherwise
,

(3)
in which Dij = |M i − M j | is the distance vector of two
mean feature vectors (M i and M j), Nf is the number of
features, SDi

k is the standard deviation of the kth feature of
the segment i, and sd is an added value of standard deviation.
The added value of standard deviation is considered to prevent
the standard deviation of a segment from being zero (when it
contains just one frame) and also increase the probability of
being similar.

In the scoring mode, we use the maximum difference
between the feature values of two average skeletons as the
difference score. We also affect the size of the anomalous
cluster to alleviate the score. The similarity score can be
formulated as follows.

SSij = wi(1−Maxk∈1..f (|M i
k −M j

k |)), (4)

where wi is the size of the cluster i with respect to the
maximum size of the detected clusters in the video, and M i

k

is the kth feature of the mean feature vector of the segment.
Based on the above similarity measurement, the steps of the

proposed anomaly detection method are as follows: Let Xt be
the training set of frames.

1) The first step is segmenting the training set. Then we
have a set of training segments St as:

St = {St
k | k ∈ 1..N ts} (5)

where N ts is the number of training segments, each
contains similar frames:

St
k = {F t

a, ...F
t
b | a, b ∈ 0..Nftk

and a ≤ b} (6)
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Fig. 3. The overall process of the proposed anomaly detection method: (a) segmentation of a training video based on the similarity of skeleton poses, (b)
average skeleton for each segment, (c) merging similar segments, and (d) comparing the detected segments in the test video with the detected segments in
the training phase. Segments (d.1) and (d.3) are recognized as normal since they correspond to similar segments (c.1) and (c.2), respectively, while segments
(d.2) and (d.3) can be considered as anomalous segments.

where
SLG(i)G(i+1) = 1 | a ≤ i < c,

G(i) = {Fi},
(7)

where G(i) is a single-frame segment consists of the
frame number i. We want to arrange the frames in a
segment so that the body state is not changed much, and
whenever the body state changes, another frame segment
is formed.

2) The similarity between non-sequential segments is de-
termined in the training dataset, and similar segments
are merged to avoid multiple comparisions in the testing
phase.

3) Finally, the similarity between the testing frames and the
training segments is determined similar to (7), and the
similarity label or score is calculated for each one.

IV. RESULTS

Given the collected dataset of e-exam videos, we try to de-
tect human behavioral anomalies in a semi-supervised manner.
We first separate the initial 30% of each video of the dataset
as the training set and the remaining part as the testing set.
For training, we examine two schemes of training: Global
and Video-Specific. In the first training scheme, we consider
recognized clusters of all training videos as a single training
set of patterns. But in the Video-Specific method, we use the
detected normal patterns of the initial part of a video to test the
remaining part of the same video. In the Global mode, the goal
is to use the normal patterns observed from all participants to
detect abnormal patterns. On the other hand, in the second

approach, each video is processed separately considering that
the angle of each record is likely to be different from each
other and also the normal behavioral patterns of different
individuals may differ from each other.

In Global training mode, it is important to normalize the
range of features of the skeletons because two skeletons
can have the same pose but with different scales. Although
the camera angle is also an important factor in shaping a
specific pose, which cannot be avoided in 2D skeleton features,
normalizing the skeletons can reduce the differences in poses
with similar angles of view. To normalize the skeleton features,
we calculate the position of the box surrounding the skeleton
and rescale each joint position according to the bottom-left
and top-right positions of the bounding box. Normalization
is also important in video-specific mode when the candidate
changes their position towards the camera or the camera’s
position changes during video capture.

The performance of the proposed algorithm is compared
to several semi-supervised anomaly detection methods based
on deep learning and data reconstruction, including Univariate
and multivariate Auto-Encoders [10], LSTM-ED [11], TCN-
ED [12], and VAE-LSTM [13]. The main parameters of these
methods are the sequence length and the size of the hidden
space, both of which were set to 15 and 10, respectively, for
all of them. The proposed algorithm also has hyperparam-
eters such as the added value of standard deviation, which
is required to form a cluster. Based on observations and
comparisons of the created pieces and examination of the
results, a value of 0.05 was chosen for this parameter. AUC
and AP metrics were used to compare the methods.
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TABLE I
GLOBAL RESULTS USING THE SCORE SIMILARITY MEASUREMENT

Anomaly Detection

Methods

Original Simplified

AP AUC AP AUC

UAE [10] 0.57 0.77 0.57 0.77

AE [10] 0.47 0.63 0.46 0.66

LSTMED [11] 0.49 0.67 0.44 0.60

TcnED [12] 0.36 0.52 0.31 0.45

VAE-LSTM [13] 0.34 0.52 0.30 0.51

Ours 0.43 0.81 0.35 0.71

TABLE II
VIDEO-SPECIFIC RESULTS USING THE SCORE SIMILARITY MEASUREMENT

Anomaly Detection

Methods

Original Simplified

AP AUC AP AUC

UAE [10] 0.51 0.68 0.42 0.59

AE [10] 0.49 0.64 0.47 0.62

LSTMED [11] 0.43 0.57 0.32 0.52

TcnED [12] 0.51 0.71 0.40 0.58

VAE-LSTM [13] 0.37 0.55 0.29 0.50

Ours 0.44 0.83 0.39 0.79

Tables I and II show the results of the anomaly detection
algorithms using the Global and Video-Specific training ap-
proaches and the soft scoring method. Table I shows that in
the Global training methods and the soft scoring, our methods
could not outperform the best previous method, which is UAE
considering all metrics except AUC for the original feature
type. The quality of frame-level scoring is degraded when
the original coordinate features are replaced with simplified
features. The score of our method in terms of the AUC
metric is much better than AP. This could be because the
proposed algorithm does not score individual frames well. The
AP metric is sensitive to the final data ranking, indicating
this issue. However, the proposed algorithm performs well
compared to others concerning the AUC metric, which is less
sensitive to data ranking. On the other hand, in Table II, the
results of our algorithm are much better than the compared
methods in terms of AUC metric. The same trends between the
original and simplified features can be seen in Table I shows.
In both tables, the scoring worked best for the original features.
Another point is that our methods could not be improved when
we use the global training approach, which can be attributed
to the variations in camera views of dataset videos. It probably
prevents the extension of the pool of known normal patterns
for each video. The last notable point is that the results of
our algorithm are not fully compatible with the results of the
compared methods, because those methods use a fixed window
size over the stream of frames but in our method, we do not
have this.

To compare the performance of our method assigning the
strict anomaly labels, we extract the best threshold from the
scores generated by each compared algorithm and determine
either zero or one label for each test sample. Specifically using
the AUC curve, we find the threshold t so that:

t = Maxi∈[0..T )(TPRi − FPRi) (8)

where T is the number of thresholds. Then we calcu-
late metrics of classification accuracy, precision and recall
of normal samples, and precision and recall of abnormal
samples. The comparative results of those metrics are shown
in Tables III and IV. Table III shows binary classification
performance using our method in video-specific mode. If
we consider the balance between precision and recall of the
anomalous samples, the quality of our method seems lower
than other methods. But it reveals interesting results. First,
the classification quality by simplified feature seems higher
than the original features. Next, in our method, the precision
of detecting normal samples and recall of abnormal samples
are very high It shows that the samples labeled normal in our
method are 99% normal. On the other hand, using our method,
most abnormal samples are labeled anomaly. Table IV shows
a similar performance to Table III with a few improvements
in results using simplified features.

V. CONCLUSION

This paper presented a semi-supervised method for de-
tecting behavioral anomalies in e-exam videos. It provides
a similarity criterion for grouping similar skeletons and seg-
menting videos. By segmenting the training video frames and
calculating the similarity of the test frames to them, it can
determine the abnormality of the test frames. The experimental
results show that the proposed algorithm can easily identify the
states of the body skeleton that do not exist among the patterns
of the learning set. The proposed algorithm is used in two
general and video-specific educational modes. The algorithm’s
quality in the video-specific mode compared to the Global
mode shows that if enough normal data samples are available
to analyze a person’s behavior, using this method in the Video-
Specific mode will produce good results. Another advantage of
this method is that it can be used to summarize videos based on
the similarity of individuals’ skeletons because some sample
frames from each segment can be included in the summary
video. Also, because this method does not need to see other
testing samples to label a sample, it can be used in online
applications for anomaly detection.
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TABLE III
THE PERFORMANCE OF METHODS ASSIGNING STRICT ANOMALY LABELS IN THE VIDEO-SPECIFIC MODE

Anomaly Detection

Methods

Original Simplified

ACC PreN RecN PreA RecA ACC PreN RecN PreA RecA
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Abstract—The recent development of deep learning methods
applied to vision has enabled their increasing integration into
real-world applications to perform complex Computer Vision
(CV) tasks. However, image acquisition conditions have a major
impact on the performance of high-level image processing. A
possible solution to overcome these limitations is to artificially
augment the training databases or to design deep learning
models that are robust to signal distortions. We opt here for
the first solution by enriching the database with complex and
realistic distortions which were ignored until now in the existing
databases. To this end, we built a new versatile database derived
from the well-known MS-COCO database to which we applied
local and global photo-realistic distortions. These new local
distortions are generated by considering the scene context of the
images that guarantees a high level of photo-realism. Distortions
are generated by exploiting the depth information of the objects
in the scene as well as their semantics. This guarantees a high
level of photo-realism and allows to explore real scenarios ignored
in conventional databases dedicated to various CV applications.
Our versatile database offers an efficient solution to improve the
robustness of various CV tasks such as Object Detection (OD),
scene segmentation, and distortion-type classification methods.
The image database, scene classification index, and distortion
generation codes are publicly available 1.

Index Terms—Dataset, Deep learning, Depth, Distortion, Ob-
ject detection, Scene analysis, Segmentation

I. INTRODUCTION

The interest in making databases available to the scientific
community is becoming more and more important with the
development of data-driven approaches, and in particular those
based on deep neural network architectures. Few studies have
been conducted to analyse the relevance and reliability of
databases in the field of CV. However, we can point out some
interesting studies where some attributes and descriptors have
been introduced to measure the representativeness and the rich-
ness of the databases dedicated to the evaluation of image and
video quality metrics [1], [2]. To the best of our knowledge,
there have been no similar efforts to design realistic databases
dedicated to improve methods developed for solving problems

1https://github.com/Aymanbegh/CD-COCO

in the field of CV. Here, we are interested in the detection
or segmentation of objects in an uncontrolled environment
and under various constraints related to the image acquisition
conditions. OD is still a hot topic and many methods have been
proposed during these last two decades [3], [4]. However, the
impact of the distortions on the performance of the proposed
OD solutions was often neglected apart a few studies limited
to object recognition and image classification under specific
distortions (noise and blur) [5] and OD under photometric
and geometric distortions [6]. A previous study [7] highlighted
the distortion impact on the OD performance through global
and local distortions without any scene context consideration
have been achieved, which proved the usefulness of data
augmentation by using a distorted database to improve OD
models robustness. Consequently, we propose a novel distorted
image database with complex and photorealistic distortions.
This database offers the diversity and quality of distortions
necessary for designing robust deep-learning models, in par-
ticular OD models. For this, we introduced the local and realist
atmospheric distortions in our database. Unlike the classic
so-called global distortions applied to the entire image, local
distortions apply to defined areas. Local distortions correspond
to the local representation of distortions resulting from scene
conditions due to object motion or position in the scene,
such as motion blur from moving objects, defocus blur and
backlight phenomena. The proposed atmospheric distortions
attempt to better replicate the natural rain and fog phenomena
by applying these distortions in a non-homogeneous manner.
These new distortions consider scene context through scene
depth and object annotation from MS-COCO’s ground truth
for better photorealism. Furthermore, a manual annotation of
the original COCO database was done to guide the choice
of the distortion to be applied automatically to each image. In
addition, a scene classification (indoor/outdoor) was performed
to automatically manage the distortion intensity according to
the type of scene. The main contributions of our study are
summarized as follows:

979-8-3503-4218-5/23/31.002023EuropeanUnion © 2023IEEE
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(a) Gaussian noise (b) Contrast changing (c) Global defocus blur (d) Global motion blur

Fig. 1: Some examples of global distortions.

• New distortions with improved realism are introduced,
describing common phenomena in computer vision
through complex local and atmospheric distortions.

• This paper proposes efficient algorithms to generate local
and global photorealistic distortions that are not included
in any existing database.

• A novel dataset is built from the MS-COCO dataset,
dedicated to the improvement of the robustness of the
OD and object segmentation models against a broad type
of distortion.

• The image database, the proposed database scene classifi-
cation index, and distortion generation codes are publicly
available.

The remainder of the paper is organized as follows. Section II
summarizes previous related literature. Section III is devoted
to detail the methods of generating complex distorted images.
Then, section IV is dedicated to show dataset details. Finally,
conclusions and perspectives are provided in section V.

II. RELATED WORK

Object detection in video sequences or still images is a
research topic of great interest given the numerous applications
in the computer vision field [8], [9] and especially in video
surveillance [10]. With the development of deep learning
methods and the availability of many databases dedicated to
this problem, this field of research has seen a real progress. A
comprehensive survey on deep learning based OD approaches
is provided in [11]. However, most of the available databases
do not consider real-world scenarios, especially images and
videos captured in uncontrolled environments, which are af-
fected by various types of distortions. In fact, many studies
have shown that OD performance is strongly influenced by
the quality of the images [5], [6], [12], [13], [7]. It is worth
noticing that the number and types of distortions considered
in these studies and the existing dedicated dataset are limited.
Furthermore, the case of multiple distortions appearing simul-
taneously has not been taken into account in OD performance
evaluation studies. Multiple distortion scenarios have been
considered in a few studies on video quality assessment but
in limited contexts [14], [15], [16]. Some interesting studies
investigated the impact of various distortions on the perfor-
mance of CNN-based OD architectures [17], [18]. However,
all these studies are limited to a few distortions and do

not consider local distortions that really correspond to real
scenarios. Indeed, if we take, for example, the blur caused
by movement, it is usually simulated in a global way in
the existing databases. While we know that in an observed
scene there can be objects moving at different speeds and in
different directions and therefore affected by blurs of different
amplitudes and directions. The same applies to the defocusing
blur, which depends on the depth of the objects in the filmed
scene. In our database we have taken into account these aspects
and others such as lighting effects that vary with the depth
and geometry of objects. We have adopted the same approach
concerning the distortions due to atmospheric phenomena such
as rain and fog. Taking into account these aspects is not simple
and it is one of the main originalities of our contribution.

III. COMPLEX DISTORTION GENERATION ALGORITHMS

Well-known global distortions have been applied to our
database through classical distortions methods. In our case,
global distortion refers to the classic distortions that apply
more or less homogeneously to the entire image, regardless of
the context of the scene. Thus, we applied global distortions
for some images resulting from image acquisition (noise, com-
pression, contrast changing) or camera (motion and defocus
blur) conditions without considering the scene context (see
fig.1). However, some images have specific scene contexts
that require the application of local or atmospheric distortions
using more sophisticated approaches. Our generated complex
distortions use scene depth information, ground truth informa-
tion from COCO annotations (object masks), and object and
scene type to produce complex and photorealistic distortions.
Scene depth information is obtained using the MiDaS depth
estimation model [19].

A. Local motion blur

Local motion blur is a local application of motion blur
phenomena to the annotated objects. It represents the cases
of image acquisition where objects move rapidly in front of
the camera. This local distortion requires the ground truth
masks to define the pixel area where the blur motion is to be
applied. Furthermore, the object mask is also used to determine
the distortion orientation through a strategy specific to the
nature of the object (object classes). Another dual strategy
allows us to compute the motion magnitude applied to each
object in the images. First, an interval of motion magnitude
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(a) Original image (b) Local motion blur (c) Mask annotation (d) Depth image

(e) Original image (f) Local motion blur (g) Mask annotation (h) Depth image

Fig. 2: Illustration of the local motion blur.

is derived from the nature of the object and prior knowledge
about the speed of the object type. Then, a magnitude value
is computed by considering the object’s depth and the others.
this value into the global scene context. Thus, each magnitude
value is obtained by correlating the nature and depth of
objects, ensuring the global consistency of each local blur
motion distortions relative to each other. Object orientation
is obtained by computing the angle between the X-axis and
the ellipse’s major axis containing the object. Then, a checking
strategy of the orientation is adapted to apply a motion blur
according to the object’s nature. Furthermore, a checking of
object interaction is achieved to prioritize the magnitude and
orientation of higher-level objects on lower ones as shown
in fig.3. This is done by correlating their depth proximity and

Fig. 3: Interaction hierarchy related to the object type

their bounding box overlap to ensure distortion consistency for
linked objects. Thus, the magnitude and orientation of higher-
level objects are applied to lower-level objects with which they
are interacting. The complete algorithm follows the following
steps:

1) Find the scene context: ski, riding, sport, skate or surf
depending on present objects in the image.

2) Object classification: create object superclasses by
grouping objects together to think globally (vehicle,
person, animal, food, etc...).

3) Compute the average depth of each annotated objects.
4) Calculate amplitude and orientation using depth and

object type to distort each object individually.
5) Find interactions between objects by correlating their

depth proximity and their overlapping bounding boxes
to apply the same distortion to interacted objects.

6) Sort the objects according to their depth to adjust their
motion amplitude for a global consistency of the scene
and distortions.

B. Local Defocus blur

Local defocusing blur results from focusing only on only
the background orforeground. To create a realistic defocus
blur, we used successive smooth thresholding to create three
distinct areas related to scene depth. This thresholding process
is performed using a nonlinear smooth function Ω expressed
as:

Ω(x) = 1− 1

1 + exp−15(x− 0.5)
(1)

Where x represents the keypoint depth normalized by the
average depth of the closest object as follows:

x =
threshold− pi

threshold
(2)

Figure 5b illustrates the image splitting through the smooth
thresholding of the scene depth to get the three different
grounds. Foreground corresponds to depths with threshold
coefficients higher than the high threshold, middle-ground
to coefficients between the high and low thresholds, and
the background for coefficients lower (see fig.5a). Then, the
average depths δ, δm, and δb of the three grounds are computed
to perform a proportional defocus blur related to the depth. We
applied a cumulative defocus blur magnitudes λ, λm, and λb
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(a) Original image (b) Local defocus blur (c) Mask annotation (d) Depth image

(e) Original image (f) Local defocus blur (g) Mask annotation (h) Depth image

Fig. 4: Illustration of the local defocus blur.

going from foreground to background on each zone, expressed
as follows:

λ = 0.5 +
δf − threshold

threshold
· 1.5 (3)

λm = λ+
δm − threshold

threshold
· 1.2 (4)

λb = λm +
δb − threshold

threshold
· 1.2 (5)

(a) Sigmoid curve for smooth
thresholding (b) Threshold related to the depth

Fig. 5: Smooth thresholding related to the depth.

The aread bounded by the masks are distorted according to
their corresponding defocus blur magnitude (λ, λm and λb),
then fused to get the complete distorted image Id. as shown in
Fig. 4. The proposed local defocus blur algorithm is described
in the algorithm 1.

C. Atmospheric distortion: the rain

Synthesizing the rain homogeneously, without any scene
depth consideration, lacks realism. Indeed, the size and density
of the rain depends on the distance from which it falls.
Thereby, our rain generation algorithm used the method from
algorithm 1 for performing a scene depth classification into
foreground, middle-ground, and background. Each ground is
assigned a rain intensity level that replicates the rain density.
Note that the rain masks are obtained from images of flow-
ing water like rain produced under experimental conditions.

Algorithm 1 Locale defocus blur algorithm
Input: Image I, Keypoints depth pi
Output: Distorted Image Id

Find the closest object depth: threshold
High threshold thf = 0.8176
Low threshold thb = 0.182
for each pi ∈ I do
σ = threshold−pi

threshold
∆(pi) = 1− 1

1+exp (−15(σ−0.5))
if threshold > pi then
Foreground← pi

else if thf <= ∆(pi) then
Foreground← pi

else if thb <= ∆(pi) then
Middleground← pi

else if thf >= ∆(pi) and thb > ∆(pi) then
Background← pi

end if
δf ← Foreground average depth
δm ← Middleground average depth
δb ←Background average depth

end for

We extract three rain densities from these rain masks by
performing some erosion and dilation processes. These three
rain sub-masks are applied for each ground according to a
random constant α of blending, achieving image blending as
shown in fig.6. It is worth noticing that the rain sub-masks are
applied cumulatively from the foreground to the background
as follows:

If = 1− ((1− I) · (1− (α ·Rf ))) (6)
Im = 1− ((1− If ) · (1− (α ·Rm))) (7)
Id = 1− ((1− Im) · (1− (α ·Rb))) (8)
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Where I , If , Im and Id are the original, foreground, middle-
ground and final distorted images respectively. Likewise, Rf ,
Rm, and Rb are the three rain sub-masks. Thus, this approach

Fig. 6: Rain distortion example

applies only the fine rain corresponding to the distant rain
stream to the distant parts of the scene for better realism,
as shown in Fig.6. Our complex atmospheric rain improves
the global consistency of distortion by considering the spatial
relationship between scene depth and rain phenomena.

D. Atmospheric distortion: the fog

Generating synthetic fog is a complex task. Indeed, no
mathematical fog model could have been used for generating
synthetic fog. Thus, we opted to use fog masks extracted
from images of experimental creations of fog with black
background.

(a) Original image (b) Original image

(c) Fog distortion (d) Fog distortion

Fig. 7: Examples of atmospheric distortion: the fog.

Many masks have been extracted to provide a large fog
sample with diverse densities and forms. These masks are
applied to the original images, seamlessly blending through a
mask adjustment. However, applying a mask homogeneously
produce a non-realistic fog. Considering the scene depth for
applying the mask to match the thick fog effect in real cases
seems crucial. Thereby, we carry out this mask H with a

variable factor κ(i, j) proportional to the normalized depth
Depthn(i, j) of each image pixel I(i, j) and a constant value
α as summarized in algorithm 2.

Algorithm 2 Fog generation algorithm
Input: Image I , fog mask H
Output: Distorted Image Id
α = 0.95
for each pixel i, j ∈ I do
Depthn(i, j) = Depth(I(i,j))

Depthmax

κ(i, j) = α ·Depthn(i, j)
Id(i, j) = (1− (1− I(i, j)) · (1− (κ(i, j) ·H(i, j))) · 255

end for

To give the images generated more photo-realism, the thick-
ness of the fog is adapted to the depth of the observed scene,
reproducing the effect of fog accumulation, as shown in figure
7.

E. Local Backlight

Local backlight distortion is generated by applying a local
contrast enhancement process to the luminance component by
using the object segmentation mask. This pixel-wise intensity
transformation takes into account the position of the light
source and that of the illuminated object on which the effect
is to be brought out. This operation, which is nothing more
than tone mapping, is applied to three preselected intensity
intervals, semi-automatically and randomly. Figure 8 illustrates
this type of photometric distortion.

(a) Original image (b) Distorted image

Fig. 8: Local backlight distortion

IV. DATASET

The generated dataset consists of more than 123K images
with 80 object classes organized in three sets: 95K, 5K and
23K images for train, validation and test sets respectively. The
ground truth annotation provides the objects’ classes, bounding
boxes, and masks for each image, which can be used for
training object detection, and segmentation models.
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A. Distortions

Our distorted dataset is composed of ten distortion types,
5 global distortions, 2 global atmospheric distortions and 3
local distortions. In order to generate the different distortions
in a coherent and relevant way, a first scan of all the images
is performed to prepare the distortion assignment protocol
according to the semantic content of the scene and the context.

The different distortions are automatically applied to the

TABLE I: Distribution of distortions.

Distortion type Number of images Ratio

Compression artefact 17989 15.3%
Contrast changing 18038 15.4%
Gaussian noise 18055 15.4%
Global motion blur 18018 15.3%
Global defocus blur 17792 15.1%
Fog 787 0.7%
Rain 845 0.7%
Local Backlight 296 0.3%
Local defocus blur 7061 6.0%
Local motion blur 18625 15.9%

images previously annotated during the first process. Images
annotated as global distortions are then distorted by one of the
global distortion types chosen randomly (see table I).

B. Scene classification

The observed scenes are classified into indoor and outdoor
scenes based on the context of the images. Indoor scenes were
attributed to scenes where most information is included in in-
door environments (room, building, hall, vehicle interior, etc.).
Conversely, outdoor scenes correspond to open environments.
The table II summarises the scene classification of our dataset.

TABLE II: Scene classification.

Scene type Number of images

Indoor scene 45884
Outdoor scene 72404
Skiing scene 4434
Surfing scene 3635
Skating scene 3603
Sport scene 11965

V. CONCLUSION

In this study, we presented novel local and global complex
distortions generated by reliable algorithms considering the
scene context to achieve a high level of photo-realism. The
proposed database will improve not only OD algorithms but
also many scene analysis, classification and image segmen-
tation methods, providing a more complete and beneficial
framework for deep learning-based methods. As a perspective,
it would be interesting to enrich this database with other
distortions and in particular those related to atmospheric
perturbations such as the heat diffusion effect and pollution.
Another aspect that could be considered in the future is to
incorporate pose object estimation when applying distortion.
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Abstract—Dynamic hand gesture recognition using a 3D 

skeleton dataset has become the most attractive research 

domain because of the multipurpose application. Although 

many researchers have been working to develop hand gesture 

systems, they are still facing challenges in achieving satisfactory 

performance and more generalizable properties because of the 

various complexities such as lacking effective features, 

computational complexity and slow execution speed etc. In the 

study, we proposed a selected joint skeleton feature selection 

approach along with CNN-based spatial and Multi-head 

attention network (MHAN) based temporal feature extraction 

to alleviate the problems. In the procedure, we selected the most 

effective skeleton point based on the visualized capability to 

extract geometric features and motion speed considering slow 

and faster motion speed. After enhancing the feature with CNN 

based spatial model, we produced a final joint skeleton-

independent spatial feature vector. After that, we enhanced 

temporal contextual information by feeding them into MHAN; 

we applied a classification module to refine the feature with 

classification. We used two benchmark datasets to evaluate the 

model: DHGD and SHREC'17. The high performance of the 

proposed model proved the superiority of the proposed model.  

Keywords—Hand Gesture Recognition, Hand Pose Recognition, 

Multi-head Attention Network, Geometric Feature, Convolutional 

Neural Network (CNN).  

I. INTRODUCTION  

Hand gesture recognition has attracted researchers for the 
last few years because of the emerging ripple impact in society. 
Currently, most people feel the flexibility to use hand gestures 
to control many devices such as television channel, the speed 
of the fan, the temperature of the air-conditioning, CCTV 
camera, open close door, driving a car, computer, the sound of 
the system, operation room and various kinds of real-life 
application. In addition, human-computer interaction controls 
wheelchairs, sign language recognition, nonverbal 
communication, medical assistive application and human 
behaviour understanding [1-2,3]. There are many researchers 
have been working to develop a hand gesture recognition 
system using images [4-9] and hand skeleton datasets. They 
still face difficulties producing good performance because of 
the lack of effective features [10-11].   

To solve the lacking of effective feature problems, many 
researchers employed statistics, mathematics and geometrical 
formula to extract from the skeleton information [12-13]. 
Some of the researchers used cartesian coordinate-based 
features [14], but this feature varies from point to point or 
location to location and viewpoint to point. On the other hand, 
while there may be drawbacks to the geometric-based features 
of the skeleton, it is important to note that these features 
remain consistent across different locations and viewpoints.  

The main drawback of the existing geometric feature-
based research work is dataset dependent [12-13] and huge 
redundant elements, which cause the heavy meaningless 
computational cost [14]. To overcome the lack of an effective 
feature and reduce the redundant feature to faster the model, 
we selected some specific key points among 22 hand skeleton 
points that carry the most effective hand gesture information 
based on the study [11]. In the work, we extracted four 
different features, 2 of which are considered geometric 
features from the selected key point and the rest two were 
extracted from the coordinate point and finally concatenated 
them. In the first case, we extracted distance features from 10 
selected joints: 5 tips, four bases and one palm centre point. 
Although four base points carry effective information for the 
gesture, these key points are not much effective for the angle-
based feature. By considering this issue, we consider only 6 
points to calculate the angle feature using five tips and one 
palms centre point. In 2nd case, we calculated slower and faster 
motion from the coordinate point to produce the identical 
value for the same gesture and high difference among inter-
gesture information. Based on the above information, we 
extracted (i) the distance feature from the selected skeleton 
key point, (ii) the angle feature from the selected skeleton key 
point human, (iii) the slower motion feature, and (iv) the faster 
motion feature. Then we enhanced the feature using a spatial 
CNN architecture, concatenated four features to make joint 
invariant embedding features and fed them into attention-
based architecture to enhance the temporal feature, which is 
demonstrated in Fig. 1.  

II. RELATED WORK 

Researchers have recently extracted skeleton points from the 

body using excellent deep-learning skeleton acquisition 
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techniques instead of high price devices such as depth 

cameras [10] or motion capture devices [15]. Researchers can 

use general cameras such as the web, CCTV, or mobile to 

collect the RGB dataset and infer the 3D skeletons [4-9] or 

3D skeleton [3] information. Sometimes different signals, 

such as WiFi signals, can produce the skeleton data [11]. This 

portable and less expensive device and system helps create 

huge datasets related to resources and increases researchers' 

interest in developing skeleton-based action and hand gesture 

recognition systems [7-11]. Usually, we can distinguish two 

different sections based on the existing skeleton-based hand 

gesture recognition research work. One type can generate 

new feature extraction from the skeleton sequence [10,15], 

then used machine learning algorithm [16-18]. 2nd type can 

design and develop a deep neural network model [4-9,19-

21]to enhance spatial and temporal contextual information 

and refine the produced feature and classification [3]. The 

skeleton-based dataset is usually considered a good 

representation containing the viewpoint invariant global 

motion features [9-10,22-23]. The main drawback of the 

single feature-based research work is too inefficient of the 

effective feature. Many other researchers focused on the 

viewpoint invariant frame-based feature without considering 

global motion features [12,13, 15]. Recently, yang et. 

proposed to combine global motion and without global 

motion features with the DD-Net CNN network to recognize 

gesture recognition [10]. The main drawback of their model 

is the less potential and redundant features with 

unsatisfactory performance. Some researchers used CNN 

[22-23], RNN [24-28], Graph attention model [3], and 1D 

CNN to recognize hand gestures. We proposed here with 

selected skeleton point-based feature and attention-based 

temporal feature extraction technique to faster the model 

speed with height performance accuracy of the model.  

III. DATASET 

We studied ten skeleton-based hand-gesture datasets to 

evaluate the model, such as SHREC'17 [15], DHGD [14], 

JHMBD [10], MSRA [3], ICVL, NV Gesture, NYU, NTU, 

UCF-Kinetic, UTKinetic, Florence 3-D action [3] dataset 

which is mainly considered as a benchmark dataset of the 

hand gesture recognition. We used two datasets which are 

most similar to our target. We considered the Skeleton dataset 

as a 3D dataset that can be expressed according to the 

following equations (1). 

                            D= (𝑄1, 𝑄2, 𝑄3, … , 𝑄𝑛)𝑇   (1) 

Where the dataset sequence is denoted by D and the 

multivariate time sequence of the frame is denoted by 𝑄𝑗 . In 

addition, T is denoted by the transpose operation of a matrix, 

and the component of each frame can be written as Equation 

(2). 

𝑄𝑗(𝑡) = (𝑋(𝑖), 𝑌(𝑖), 𝑍(𝑖))      (2) 

Here,  𝑄𝑗(𝑡)  is denoted the joint skeleton position for i-th 

skeletal and axis 𝑗𝑖. In our cases, the DhGD and SHREC'17 

have 22 key points collected from the intel creative camera 

visualized in Fig.  2. The position of each skeleton point of 

the camera can be expressed as 𝑄𝑖 = (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) ∈ ℝ3 , ∀𝑖∈

⟦1;𝑁⟧, where N=22. Fig.  2 visualizes the 22 points' location 

and the number of hand key points.  

A. SHREC'17 Dataset 

SHREC'17 is one of the most usable benchmark 

datasets for skeleton-based hand gestures [15]. This 

dataset contains 14 right-hand gestures, including finger 

information and configuration. This dataset was 

recorded with Intel RealSense Camera from 27 people 

by considering two different ways of the class label 

setting. They collected 2800 video sequences datasets, 

each containing 20 to 70 frames. In the work, we 

considered 32 frames from every single video, and there 

are 22 skeleton points in each frame. To configure the 

class label setting, they follow two ways: coarse gesture 

and fine gesture, which mainly depend on finger 

spelling. Fig.  2 demonstrates the 22-hand skeleton 

points of this dataset, and the dataset is available in the 

following link:  

 https://projet.liris.cnrs.fr/eg3dor17/#shrec 

B. DHGD Dataset 

This publicly available dataset uses a skeleton-based dynamic 

hand gesture dataset with 14 rig hand gestures and finger 

spelling styles [14,29]. This dataset is recorded from 20 

people, and are collected 2800 videos. In our study, we 

considered 32 frames for each video, where each franc 

consists of 22 hand key points, including 3D coordinates. 

This dataset is also coarse and fine based on finger spelling. 

The label configuration of the dataset also followed the 

coarse and fine procedure. Fig.  2 shows the 22 key points of 

this dataset.    

IV. PROSED METHODOLOGY 

Fig.  1 demonstrates the proposed method architecture, 
where we composed the hand-crafted feature extraction 
technique with a spatial-temporal deep neural network. We 
extracted four kinds of geometrical and coordinated (G&C) 
features, including Selected Joint-Coordinate Distance 
(SJCD), Selected Joint-Coordinate Angle (SJCA) [10-11], fast 
motion and slow-motion features [4, 10]. The main 
contribution of the work is given below: 

• We calculated the geometric distance feature from 10 
selected joints and the angles from 6 selected joints.  

• Extracted cartesian coordinate feature as slower and 
faster motion.  

• Applied a spatial CNN to frame wise spatial 
information 

• Applied multi-head attention model on the 
concatenated feature to enhance the temporal feature. 
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• Finally, a new classification module was applied for 
predicting the new hand gesture images.  

Fig. 1. Proposed working flow architecture 

A. Feature extraction 

Feature extraction in machine learning is the process of 
extracting the x-axis, y-axis, and z-axis, which were chosen 
based on their high correlation, for more details, please refer 
to the subsequent subjection 1) Selected Joint-Coordinate 
Distance (SJCD), 2) Selected Joint-Coordinate Angle (SJCA), 
3) Motion Features-Fast and Slow below. 

 

 

 

 

 

 

 

 

 

Fig. 2. 22-hand skeleton and selected joint 

1) Selected Joint-Coordinate Distance (SJCD) 
To calculate the distance and angle feature, we are 

considering the tip and palm points of the hand. In more 
explanation, 32 frames in each video can be defined as a T, 
and each frame has N number of joints and, in our case, N=22. 

For a specific frame, 3D coordinates can be expressed as 𝐽𝑖
𝑇 =

(𝑥, 𝑦, 𝑧) . Among the 22 joints, we selected ten joints for 
calculating the feature based on the study [11], where they 
considered five tip joints, four Based joints, and one from 
palm point sequence number is 2, 5,7,10,11,14,15,18,22 and 
pulm point 6 visualized in Fig.  2 red and green color.  

TABLE I.  DISTANCE-BASED FEATURES 

Starting Joint 

Number 

Distance to the Joint Numbers No. of Distance-

Based Features 

6 {2, 5,7,10,11,14,15,18,22} 9 

2 {5,7,10,11,14,15,18,22} 8 

5 {7,10,11,14,15,18,22} 7 

7 {10,11,14,15,18,22} 6 

10 {11,14,15,18,22} 5 

11 {14,15,18,22} 4 

14 {15,18,22} 3 

15 {18,22} 2 

18 {22}  

Average Palm to  all Joint 1 

 

We put all selected joints together, which can be written 
as  𝑆𝑇 = {𝐽1

𝑇 , 𝐽2
𝑇 , … , 𝐽3

𝑇}.  

𝑆𝐽𝐶𝐷𝐾 =

[
 
 
 ‖𝐽6

𝑇𝐽2
𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ ⋯ ‖𝐽6

𝑇𝐽22
𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

⋮ ⋮

‖𝐽18
𝑇 𝐽22

𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ]
 
 
 

     (1) 

Here ‖𝐽6
𝑇𝐽2

𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ (𝑗 ≠ 𝑗) represents the distance between 𝐽𝑗
𝑇 

and 𝐽𝑖
𝑇. The final feature vector of the SJCD is generated as a 

dimension vector, and its size is small because of the selection 
procedure. Table I demonstrates the distance feature, which 
we calculated using Equation 1. In the first raw, we 
demonstrated the distance from the palm or the centre of the 
hand palm point to each point and got the nine distances. Then 
we sequentially calculated the distance from all other points 
to other joints. 

2) Selected Joint-Coordinate Angle (SJCA) 
We are considering only five tips and one palm point of 

the hand to calculate the angle feature. In more explanation, 
32 frames in each video can be defined as a K, and each frame 
has N number of joints and, in our case, N=22. For a specific 

frame, 3D coordinates can be expressed as 𝐽𝑖
𝑘 = (𝑥, 𝑦, 𝑧). Our 

study selected only six joints to calculate the angle feature. Fig.  
2 demonstrates the six points in red color. Table II 
demonstrates the calculated angle from each selected joint 
[10].  

TABLE II.  ANGLE-BASED FEATURES 

Joint 

 Index 

 

Vector sets Starting 

Joint (P) 

and Another Joint 

Variable (V) 

Other Joints (V) Number of 

Angle-Based 

Features 

6 {𝑃6𝑉⃗⃗⃗⃗⃗⃗  ⃗} {𝑃5, 𝑃10, 𝑃14, 𝑃18, 𝑃22} 5 × 3 = 15 

5 {𝑃5𝑉⃗⃗⃗⃗⃗⃗  ⃗} {𝑃10, 𝑃14, 𝑃18, 𝑃22} 4 × 3 = 12 

10 {𝑃10𝑉⃗⃗⃗⃗⃗⃗⃗⃗  ⃗} {𝑃14, 𝑃18, 𝑃22} 3 × 3 = 9 

14 {𝑃14𝑉⃗⃗⃗⃗⃗⃗⃗⃗  ⃗} {𝑃18, 𝑃22} 2 × 3 = 6 

18 {𝑃18𝑉⃗⃗⃗⃗⃗⃗⃗⃗  ⃗} {𝑃22} 1 × 3 = 3 

 

3) Motion Features-Fast and Slow 

      Motion information is considered as one of the most 

important features of the skeleton-based datasets, which we 

calculated by subtracting the Joint to Joint from the adjacent 

frame using the following formula: 𝑉𝑇
𝑀 = (𝑥𝑉,𝑇 −

𝑥𝑉,𝑇+1, 𝑦𝑉,𝑇 − 𝑦𝑉,𝑇+1) . Here 𝑉𝑇
𝑀  the video or sequence of 

frames that contain motion value is the frame, and t is an 

index of the frame. However, the motion is mainly calculated 

from the temporal differences of the cartesian coordinate, 

which can be classified into fast motion and slow motion 

based on the location of the joint in various frames. The scale 

of the global motions may vary from gesture to gesture but 

may not be identical for the same gesture. The scale of the 

temporal different can be faster or slower [12]. So exploring 

the actual global motion features of faster and slower motion 

can be more helpful. To account for this issue, we focused 

here on both slow global motion and fast global motion, 

which will be formed as two scaled global motion features. 

Two scales of the global motion can be expressed using the 

following Equation. 

GMT = {
MSlow

T = xV,T − xV,T+1, yV,T − yV,T+1

MFast
T = xV,T − xV,T+2, yV,T − yV,T+2

    (2)                                                                     
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Here, GMT ,  MFast
T ,  MSlow

T  are represented by the global 

motion, faster global motion and slower motion, respectively. 

Here, V, T + 1 and V, T + 2 are the future frame of the V, T 

single frame and double frame sequentially. In the same way, 

for all of the T frames in video V [1,…, T], we got the  slow 

and fast motion like  MSlow
[1,….,T−1]

, MFast
[1,….,T/2]

 

B.  Spatial-CNN Model 

The position of the joint can be dynamically changed based 

on the gesture to gesture, but sometimes it may be almost 

similar. Most of cases, deep neural networks consider that all 

joints are correlated with each other, and it is challenging to 

use uncorrelated data because of the various complexity. We 

applied a spatial CNN architecture to solve the issues, 

enhance the frame-wise information, and make a latent vector. 

We applied a new CNN architecture demonstrated in Fig. 3. 

It will learn the joint correlation automatically through 

convolution. It is also used to reduce the skeleton effect noise. 

Let's assume that the spatial representation of the 

𝑆𝐽𝐶𝐷𝑇 , 𝑆𝐽𝐶𝐴𝑇 , 𝑀𝑠𝑙𝑜𝑤
𝑇  and 𝑀𝐹𝑎𝑠𝑡

𝑇  are 

𝒮𝑆𝐽𝐶𝐷
𝑇 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙1(𝑆𝐽𝐶𝐷𝑇); 

𝒮𝑆𝐽𝐶𝐴
𝑇 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙1(𝑆𝐽𝐶𝐴𝑇);                 (3) 

𝒮𝑀𝑆𝑙𝑜𝑤
𝑇 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙1(𝑀𝑠𝑙𝑜𝑤

𝑇 ); 

𝒮𝑀𝐹𝑎𝑠𝑡
𝑇 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙2(𝑀𝐹𝑎𝑠𝑡

𝑇 ); 

Also, in the figure, we demonstrated the same feature for 

Saptial1 and Spatial2 because of the max pooling operation 

in the 3rd of the CNN because of the D/2 dimension, which 

contained about T/2 frames of the 𝑀𝐹𝑎𝑠𝑡
𝑇  compared to the 

others.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Temporal Context Enhancing CNN Module 

After generating the spatial feature individually, we 

concatenated them using the following Equation, 

𝒮𝑇 = 𝒮𝑆𝐽𝐶𝐷
𝑇 ⊕ 𝒮𝑆𝐽𝐶𝐴

𝑇 ⊕ 𝒮𝑀𝑆𝑙𝑜𝑤
𝑇 ⊕ 𝒮𝑀𝐹𝑎𝑠𝑡

𝑇  (4) 

Where the concatenation operator is denoted by ⊕ and the 

dimension of the final feature vector can be written as  

𝒮𝑇 ∈ ℝ(
𝑇

2
)×𝑓𝑖𝑙𝑒𝑟𝑠

. We next applied the attention model based 

on the concatenated features to learn temporal features.  

C. Multi-Head Attention Architecture 

Fig.  4 demonstrates the proposed attention model we 

redesigned from [10,28,30]. 

 

Fig. 4. Proposed Attention Module 

Let our concatenated feature 𝑓(𝑇,𝑖) for the specific joint 𝐽(𝑡,𝑖) 

which is considered an initial feature input feature of the 

attention model. We are considering multi-head attention 

here and assume that one head name is  𝑚-th attention. Three 

fully connected layers are used parallelly to produce the 

mapping information, namely query, key and value of the 

input feature 𝑓(𝑇,𝑖) . These mapping functions can be 

expressed as the following equations. 

 𝑄(𝑇,𝑖)
𝑚 = 𝑊𝑄

𝑚𝑓(𝑇,𝑖)    

𝐾(𝑇,𝑖)
𝑚 = 𝑊𝐾

𝑚𝑓(𝑇,𝑖)          (5) 

  𝑉(𝑇,𝑖)
𝑚 = 𝑊𝑉

𝑚𝑓(𝑇,𝑖)                

Here, 𝑄(𝑡,𝑖)
𝑚 , 𝐾(𝑇,𝑖)

𝑚 , and 𝑉(𝑇,𝑖)
𝑚  is represented by query, key and 

value, respectively. In addition, the weight matrix of these 

mapping is denoted by 𝑊𝑄
𝑚, 𝑊𝐾

𝑚, 𝑊𝑉
𝑚. Fig.  4 demonstrates 

each step operation in detail, where query and key are used to 

operate the dot product, then applied an activation function, 

producing an attention map and multiplying the attention map 

with the value matrix [3, 10,28,30,31]. The matrix 

multiplication can be expressed with the following equations.  

𝑢 =
<𝑄,𝐾>

√𝑑
 and 𝛼 =

exp (𝑢)

∑ 𝑒𝑥𝑝𝑁
𝑛=1  (u)

                (6) 

Where the dimension of the key vector is represented with d, 

the scale dot product between the query and key matrix is 

represented by u, where the inner matrix is denoted by 〈. , . 〉. 
In the same way, we produced four output matrices with the 

four heads and finally concatenated the four features and 

produced the final feature. After applying linear activation, 

concatenated the output of the attention model with the 

original information through the skip connection to retrieve 

the missing information.  

D. Classification Module 

After producing the temporal feature with the attention 

network, we applied a classification model to refine the final 

feature and the classification. Then we applied an averaging 

filter and fully connected layer for classification. Fig.  5 

shows the classification module that included several CNN 

layers with different filters and pooling layers to refine the 

final feature.  
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Fig. 5. Classification Module 

V. EXPERIMENTAL EVALUATION 

To evaluate the model, we used the DHG and SHREC'17 
datasets here. To compile the model, we used Adam optimizer 
with a 0.001 learning rate for the training model and 32 batch 
size with a 0.1 dropout rate [3-8]. We used a GPU RTX 3090 
with a PyTorch platform with 24 GB GPU memory to run the 
code.  

A. Performance Accuracy with DHGD Dataset 

Table III shows the performance of the proposed model 
with the DHGD dataset and a state-of-the-art performance 
comparison with various models. Table III demonstrated that 
the proposed model achieved 92.21%, whereas the existing 
model reported a lower performance compared to ours. Some 
models used skeleton and depth information and achieved 
8.00% average performance accuracy. Some models used 
joint similarities, which achieved 83.35% accuracy, and using 
RNN, they achieved 84.68% accuracy. They achieved 90.48% 
accuracy with the Hif3d model, and 91.00% accuracy was 
reported using the DG-STA model.  

TABLE III.  PERFORMANCE ACCURACY WITH SHREC’17 DATASET 

 

 

 

 

 

 

 

 

 

 

B. Performance Accuracy with SHREC'17 Dataset 

Table IV demonstrates the performance of the proposed 

model with state-of-the-art performance for the SHREC'17 

dataset. Table IV shows that our proposed model achieved 

95.00% accuracy, whereas other models reported lower 

performance compared to our study. Among the Rcent model, 

STA-RES-TCN reported 93.60% accuracy, DG-STA showed 

94.40% performance, and Jiang et al. reported 94.60% 

accuracy.  

 

 

 

TABLE IV.   PERFORMANCE ACCURACY WITH DHGD DATASET 

VI. CONCLUSION  

In the study, we proposed several feature extraction 

techniques with the selected hand joint key point instead of 

all the points of the hands. Then we applied the CNN-based 

spatial model to enhance the spatial feature and the attention 

model to enhance the temporal feature. Finally, we used a 

classification model to refine the final feature and predict the 

new input. The proposed study's high-performance accuracy 

proved the proposed model's effectiveness. In addition, we 

are focusing only on the selected six key points to extract the 

angle feature and ten key points for the distance feature 

instead of the 21 joint key points, reducing the proposed 

model's computational complexity. In addition, concatenated 

features can overcome the lacking of effective feature 

problems. In the future, we will evaluate the proposed model 

with other datasets and develop a hand gesture generalized 

system.  
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Abstract—We proposed a deep cattle teat length network
(CTL-NET) for the analysis of cattle teat length trait. Our
network consists of a major part and an extended part to
perform regression. These parts consolidate our network to learn
layer-wise teat length patterns and formulate a deep end-to-end
architecture. Our network makes the feature maps less dimen-
sional, preventing overfitting. We also use various augmentation
techniques to encode variations in the collected data in terms
of RGB only, depth only and fused RGB and depth images.
By capturing non-linear relationships, conditioned on augmented
and non-augmented data, these quantitative assessments provide
good insights into how our network articulates around the teat
length trait. We used mean absolute error as a performance
metric. We compared the performance with four recent and state-
of-the-art networks, including a network driven by spatial and
channel attention.

Index Terms—Cattle traits, Teat length trait, Deep learning for
milk productivity, Udder conformation.

I. INTRODUCTION

Deep learning has achieved great success in various do-
mains, including energy [1], agriculture [2], healthcare [3],
farming [4], robotics [5], security [6] and construction [7].
This technology can analyze vast data sets, recognize patterns,
and make predictions with great accuracy. Nevertheless, unlike
other fields, deep learning has not been explored extensively
in the analysis of cattle traits. Cattle traits analysis involves
examining cattle’s genetic and physical features to improve
breeding programs and enhance productivity. This area is
still new, and deep learning has not been fully investigated
yet. Additionally, expertise in both data analysis [8] and the
relevant field is necessary for deep learning [9].

Fig. 1. Cattle teat length trait. Scores from 1 to 3 mean a short teat length.
Scores from 4 to 6 represent intermediate teat length. Scores from 7 to 9
represent long teat length [10].

In the Norwegian breeding program, udder conformation
traits are scored by breeding advisors using a linear scale
[11]. For example, the teat length trait score ranges from 1
to 9. The score 1 is given to the shortest teat length, and
score 9 is given to the longest teat length (as shown in Fig.1).
This is the standard Norwegian red breading program system
for scoring teat length traits. It is worth noticing that these
early evaluations may not reliably predict the quality of the
udder later in life. Monitoring changes in udder conformation
requires repeated assessments over time, which can be a costly
and time-consuming process. To alleviate this, sensors and
cameras can be utilized to collect data on udder conformation,
and deep learning models can be trained to automate the
decision-making process. In this work, we consider cattle teat
length trait. The physical characteristic known as ”cattle teat
length” relates to the length of the teats, which are the cows’
projecting nipples on the udder. In analyzing cow qualities,
the length of the teat is a crucial consideration because it
might affect the effectiveness and simplicity of milking. While
a cow with shorter teats may be more pleasant for the milker
and produce milk more quickly, a cow with longer teats may
be more difficult to milk, as shown in Fig. 1. Consequently,
depending on the desired outcome, breeding programs can
choose to favour or disfavour teat length. There is a potential
for deep learning networks to make a considerable contribution
to the sector. Therefore, we propose a deep cattle teat length
network (CTL-NET) inspired by MobileNet V2 (MobN) [12].
Our CTL-NET learns representations that are appropriate for
the cattle teat length attribute. Our model understands highly
non-linear connections in data by interpreting probabilities or
continuous values in terms of regression. Our contributions are
listed as follows:

• We proposed the CTL-NET, which efficiently captures
the variations in cattle data without overfitting.

• We have collected and used RGB only, depth only, and
fused RGB and depth images for analysis.

• We performed analysis using non-augmented and aug-
mented data considering four recent and state-of-the-art
networks.

The rest of the paper is organized in the following Sections.
In Section II, we present the related works. We present our
proposed method in Section III. Experimental results on our
collected dataset are presented in Section IV. The conclusion

979-8-3503-4218-5/23/$31.00 ©2023 IEEE
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Fig. 2. Deep cattle teat length network (CTL-NET). The CTL-NET has an extended part that captures the teat length features more efficiently.

is presented in Section V.

II. RELATED WORKS

We divide the relevant works into two categories: traditional
approaches and methods based on deep learning.

In the category related to the traditional approaches, De
et al. [13] used Bayesian inference to evaluate breeding
values through two-trait analyses to address this issue, and
Carvalho et al. [14] estimated genetic parameters of several
conformation and management qualities. In order to establish
a connection between functional traits and milk production,
Kappes et al. [15] used multivariate analysis to look at
lameness score, udder cleanliness score, and udder depth.
The genetic and phenotypic changes in udder shape that
take place within and between parties were the focus of
the study of Poppe et al. [16]. Vlahek et al. [17] took into
account a variety of functional parameters, such as lameness,
claw health, and female fertility. They stated that the lack
of data, poor heritability of features, and limited genetic
gain following selection oppose the identification based on
functional qualities. According to the study [18], milk yield
and udder characteristics were shown to be closely related.
A probabilistic technique was used by Stefani et al. [19] to
explore the genetic gains of udder, foot, and leg features.
These traits’ heritabilities were calculated, and the researchers
discovered that choosing traits that are marginally associated,
such as well-placed medium-length teats and a reasonable set
of feet and legs, may help animals obtain longevity early in
the genetic development process.

In the deep learning category, Fadul et al. [20] developed
predictive and prescriptive decision support tools using a
variety of machine learning algorithms to identify mastitis at

an early stage. A difficult problem in managing dairy cow
udder health, Porter et al. [21] investigated the viability of
employing a deep learning system to monitor teat tissues. Their
method was efficient in routinely and properly measuring teat-
end status, but it ignored mastitis illness, a serious economic
and health issue in the dairy industry. Xudong et al. [22] used
a deep learning network based on bilateral filtering augmen-
tation of thermal images to further speed up and automate the
detection of mastitis. Ebrahimi et al. [23] studied a strategy for
early diagnosis of sub-clinical mastitis utilizing deep learning-
based algorithms to identify patterns of risk factors in order to
overcome this difficulty. Nye et al. [24] used a composite deep
learning-based system to evaluate conformational traits and
derive phenotypic data from morphological aspects. The study
used pedigree and picture data to estimate high heritabilities
while accounting for relevant biological information.

Our study falls into the latter group and will help enhance
deep learning-based techniques for examining features related
to the teat length.

III. PROPOSED METHOD

We proposed a deep cattle teat length network (CTL-
NET) which is a fully end-to-end trait regressor inspired by
MobileNet V2 (MobN) [12]. We estimate the length trait by
combining the MobN network with an extension part. The
two parts are complementary to each other and are combined
for efficient teat length trait estimation. Fig. 2 demonstrates
a general-to-specific deep learning network CTL-NET which
reduces the challenge of over-fitting on the cattle teat length
trait data. Our CTL-NET network consists of a major part
and an extended part. The major part is the base model of
MobileNet V2. The extended part consists of a global average
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Fig. 3. Mean absolute error (MAE) for RGB-only images: We present validation and training MAE values for IncN, MobN, WN, CASA and our proposed
CTL-NET without augmentation in the first row. We also present validation and training MAE values for the five networks with augmentation in the second
row.

pooling layer, a dense layer with 128 nodes, a dropout layer
with a rate set to 0.3, and a regression layer with a single
output. The CTL-NET learns layer-wise teat length pattern
representations and formulates an end-to-end deep architecture
for teat length trait estimation.

The MobN network uses inverted residual blocks to increase
the network’s non-linearity while reducing the number of
parameters. In these blocks, the input features are first ex-
tended to a larger number of channels with a 1x1 convolution,
then processed by a lightweight depthwise convolution, and
then projected back to a smaller number of channels with
another 1x1 convolution. The MobN network also uses linear
bottlenecks, which are developed to amplify the flow of
features through the architecture and reduce the impact of the
non-linear activations on performance. In these bottlenecks,

the input features are initially processed through a linear
bottleneck layer with a smaller number of channels before
being transformed by the main convolutional layer. Moreover,
the MobN network exploits width and resolution multipliers,
which can be considered to tune the size of the architecture.
The width multiplier overcomes the number of channels in the
network, and the resolution multiplier adjusts the size of the
input images.

Owe to the usage of the CTL-NET; we find it necessary to
add an extension in terms of different components. For this
purpose, we consider the global average pooling technique to
minimize the spatial dimensions of the output by averaging
all the data [25]. It makes the feature maps less dimensional,
preventing overfitting and lowering the number of parameters
in the network, improving its computational efficiency. It also
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consolidates the network with a type of spatial regularization
that guarantees the network learns features that are resilient
to minute translations in the input image. For the image
regression task, the global average pooling technique performs
better than the flattened layer. The dense layer in the extension
catches complicated patterns in the cattle trait data that can
help the network understand intricate connections between
the input and output. Sharing parameters across all neurons
is possible with dense layers, which minimizes the number
of parameters in the network and makes it easier to train
and more computationally efficient. Our CTL-NET uses the
dense layer in the extension part to learn representations of
the cattle teat length trait data that is hierarchical in nature,
with each layer capturing increasingly abstract characteristics
of the data. The extension part also consists of dropout
to avoid overfitting and enhance generalization performance.
The dropout in our network prevents any individual neuron
from being overly dependent on any other specific neuron by
randomly dropping out (i.e., deactivating) a percentage of the
neurons during each training iteration. This drives the neural
network to acquire more resilient and universal characteristics.
The dropout trains the CTL-NET with various neuron config-
urations, which essentially enables it to learn more varied and
complementary representations of the input data. Additionally,
the dropout in the extension part can enhance the network’s
overall performance on the tests by enhancing its capacity to
generalize to new and unexplored data.

IV. EXPERIMENTAL ANALYSIS

An Intel RealSense D415 camera and tablet were used to
create a handheld gadget for taking pictures of cattle teats.
Images were taken vertically up from the floor with the
camera positioned beneath the cow’s udder. The photos were
taken in a variety of housing arrangements, including tied-
stall, loose-housing, and milking parlour arrangements. The
number of original images related to score 1, score 2, score
3, score 4, score 5, score 6, score 7, score 8, and score 9 are
126, 206, 195, 201, 201, 196, 118, 50, and 19, respectively.
The total number of images is equal to 1312. These 1312
images are in RGB and depth pairs. To balance the number
of images, we used augmentation techniques like rotation,
shifting, zooming, flipping, changing brightness, and shearing.
These augmentation techniques are applied to the last two
scores to balance them with the rest of the data. Therefore,
the number of augmented images for the last two scores is
196 and 190. The total number of images is equal to 1648
after augmentation. These images are in RGB and depth pairs,
which means there are 1648 RGB images and 1648 depth
images. We made sure that the same augmentation techniques
were applied to the RGB and depth images in a pair to keep
consistency in the data across the two data modalities. We
have used the Adam optimizer, and the batch size equal to 10.

We compare the performance of the CTL-NET with four
state-of-the-art networks, namely: Inception (IncN) [26], Mo-
bileNet V2 (MobN) [12], and Wide Residual Network (WN)
[27]. All these models are pre-trained on the ImageNet dataset.

We also compare the performance with a convolutional neural
network with channel attention [28] and spatial attention
(CASA). We present the experimental results in Fig 3 for
all four deep learning models using only RGB images. The
first row shows the results considering the dataset without
augmentation. The second row shows the results considering
the augmentation. We depict them in terms of validation and
training performances considering the mean absolute error
(MAE). As can be seen, it is challenging for all the networks
to learn the variations in the dataset due to its imbalance nature
and limited number of samples in the first row. In the second
row, all four reference networks tend to face overfitting. The
CTL-NET learns variations in the dataset efficiently.

We also present the results using only depth images in
Fig. 4. As can be seen, the reference models tend again
toward overfitting where our CTL-NET has the generalization
capability and avoid overfitting. Last but not least, we present
the results using fused depth and RGB images in Fig. 5. As can
be observed, our CTL-NET learns the variations in the dataset
properly. The performances of all four reference networks are
not good. Our dataset is complex, consisting of nine different
teat length trait scores. The reference networks have limited
expressive power in terms of representing complex functions
to capture the underlying patterns in the teat-length trait data.
They struggle to automatically learn different features from
the data due to a lack of scalability. Our CTL-NET captures
more intricate patterns and relationships from the data.

TABLE I
WE PRESENT THE AVERAGE MEAN ABSOLUTE ERROR FOR THE

REFERENCE NETWORKS AND OUR PROPOSED CTL-NET.

Networks RGB Depth RGB and depth
IncN 1.58 1.28 1.38

MobN 1.43 1.25 1.45

WN 1.52 1.46 1.45

CASA 1.65 1.63 1.68

CTL-NET 1.59 1.25 1.21

We also present the average mean absolute error in Table
I for the reference networks and our proposed CTL-NET. It
is worth noticing that we consider only the values for the
last 28 epochs where networks are expected to show stability.
As can be seen, our CTL-NET shows smaller average mean
absolute errors considering both the depth images and fused
RGB and depth images. In the case of depth images, the error
is 1.25, and the error is 1.21 in the case of fused information.
The MobN network shows a smaller error equal to 1.43 for
only RGB images. However, all these reference networks
face overfitting. Therefore, having smaller errors only for
RGB images does not show generalization capability. These
results also show that our proposed CTL-NET achieves higher
performance when the depth and RGB data are fused together.
It is worth in the deep learning domain since fusing different
modalities of data provides variations, and our proposed
network is consolidated with these variations. Considering
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Fig. 4. Mean absolute error (MAE) for depth-only images: We present validation and training MAE values for IncN, MobN, WN, CASA and our proposed
CTL-NET with augmentation.

Fig. 5. Mean absolute error (MAE) for fused depth and RGB images (RGBD): We present validation and training MAE values for IncN, MobN, WN, CASA
and our proposed CTL-NET with augmentation.

the limitations, we did not explore the same models without
pretraining them. The models in their pre-trained status are not
trained for a longer time [29]. Moreover, different approaches
regarding the combination of RGB and depth information
should be explored.

V. CONCLUSION

We proposed a CTL-NET model for teat length trait analy-
sis. We presented the results in comparison with four state-of-
the-art reference methods using the mean absolute error as the
performance metric. For this purpose, we consider RGB only,
depth only and fused RGB and depth images of teat length

trait images. We also looked into how augmented and non-
augmented datasets affected these networks’ performances.
Our research has shown that our CTL-NET model efficiently
learns the variations in the data without facing the problem of
overfitting in all the cases.
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Abstract—Autonomous underwater vehicles (AUVs) are 

efficient robotic tools, offering a wide range of applications in ocean 
exploration and research, such as oceanographic mapping, 
environmental monitoring, and archaeology. Incorporating an 
automatic object detection system with AUVs can substantially 
improve their ability to perceive and recognize objects in a 
complicated and often hazardous environment. Currently, detecting 
underwater objects relied on a man-in-the-loop approach, where 
AUVs captured vast amounts of data and saved them in memory for 
offline processing. This study investigates the use of deep learning 
for automatic image preprocessing and object detection, evaluating 
and comparing three state-of-the-art YOLO (You Only Look Once) 
models, including YOLOv8, YOLOv7, and YOLOv5. Extensive 
experiments were conducted using publicly available underwater 
image datasets, revealing that the pre-trained models attain superior 
performance on the Brackish dataset. YOLOv5 and YOLOv8 
achieved the highest mean average precision (mAP) with a score of 
99%, while YOLOv7 scored 89%. Furthermore, an underwater 
image enhancement algorithm is employed on the URPC2021 
dataset, significantly improving the detection accuracy with a 3% 
increase in mAP across all three models. In terms of inference speed, 
YOLOv5 demonstrated the highest frames per second (FPS), while 
maintaining comparable performance in mAP and recall. 

Keywords—Underwater robotics, AUV, underwater object 

detection, image enhancement, YOLOv8, YOLOv7, YOLOv5.  

I. INTRODUCTION  

The marine environment is a diverse and intricate part of 
the Earth's surface, serving a significant role in sustaining both 
the environment and human populations. It provides valuable 
minerals, oil, gas, and other aquatic resources, making it a 
target for marine exploration endeavours [1]. However, its 
harsh conditions hinder exploration through traditional means, 
rendering it the least explored environment. In recent years, 
the development of underwater robots, such as autonomous 
underwater vehicles (AUVs) provides a great opportunity to 
explore and protect the resources beneath the water. AUVs 
come with various sensing devices, including underwater 
cameras, sonars, depth sensors, and lighting. They are also 
equipped with other payload devices that enable them to 
monitor underwater environments and carry out intricate 
underwater operations. These operations include capturing 
marine organisms, creating oceanographic maps, inspecting 

pipes and cables, conducting environmental surveillance, and 
exploring wrecks and archaeological sites. The flourishing 
growth of artificial intelligence (AI) and intelligent systems 
are indispensable technologies to accomplish these tasks and 
play an important role in the development of AUVs. 
Integrating an intelligent object detection system on board can 
significantly enhance the perception and recognition 
capability of AUVs.  

Underwater object detection methods rely on either 
acoustic images or optical images [2]. Sonars and vision 
cameras are key perception equipment used to identify and 
detect objects in underwater environments. In contrast to 
sonars, optical images captured by vision cameras offer higher 
resolution and a greater amount of detailed information [3]. 
Moreover, optical systems are more cost-effective in terms of 
acquisition methods. As a result, there is an increasing interest 
in using optical systems for underwater target detection. 

Traditionally, the task of detecting underwater objects was 
performed by a man-in-the-loop approach where AUVs 
capture imaging data and store them in memory for offline 
processing by expert analysis [4]. However, there is an 
increasing demand for automatic underwater processing to 
enable on the fly decision-making and to extend mission 
times. Specifically, undersea exploration using automatic 
object detection has two advantages. Firstly, it allows AUVs 
to make real-time decisions based on the data it collects where 
accurate detection and recognition of objects undersea is 
imperative, thereby saving a lot of time and allowing longer 
surveys. Secondly, real-time underwater object detection can 
enable greater autonomy for AUVs, which perform 
preprogrammed missions. AI-powered AUVs are expected to 
perform not only to collect data but also to perceive and react 
to the data it collects immediately (e.g., reinspection of 
interesting objects). 

In the last few years, deep learning (DL) techniques have 
revolutionized the field of computer vision and have fuelled 
the practical application of underwater object detection. 
Villon et al. [5] compared the traditional approach (histogram 
of oriented gradients + support vector machine) with the deep 
learning method in coral reef fish detection and their 
experimental analysis showed the superiority of the deep 
learning method for object detection underwater. In their 
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work, Wang et al. [6] introduced a deep learning architecture 
that incorporates convolutional encoding and decoding 
features to recognize objects underwater. Their proposed 
framework utilizes a pre-trained convolutional model, 
AlexNet, which was initially trained for the ImageNet task. 
The authors transfer the knowledge of the first two layers of 
the model to facilitate the underwater detection task. 
Similarly, another study [7] utilized deep convolutional 
networks, transfer learning, and data augmentation to develop 
a real-time fish detection and tracking framework from video 
monitoring systems of AUVs. Recently, Michael et al. [8] 
created a method for detecting litter in underwater 
environments using visual deep learning to tackle the issue of 
plastic debris pollution. The researchers assessed the 
effectiveness and precision of different deep learning models, 
such as Faster RCNN, SSD, YOLOv2, and Tiny-YOLO. 
Faster RCNN was found to have the best performance, 
although with a weakened inference time. YOLOv2 achieved 
a good trade-off between speed and accuracy. 

This paper aims to explore the use of the latest deep-
learning techniques for automatic object detection in AUVs 
and to determine the most suitable algorithm for deployment 
using underwater images and videos. AUVs require real-time 
decision-making, where correct detection and classification of 
objects underwater is imperative. Detection based on classical 
computer vision is difficult and error-prone due to manually 
created feature extractions. The key highlights of our study are 
outlined in the following. 
• An underwater image enhancement pipeline that 

incorporates colour correction, dehazing, and contrast 
enhancement is developed to enhance the quality of 
underwater images and improve detection accuracy. 

• Evaluate the performance of three state-of-the-art YOLO 
models (YOLOv5, YOLOv7, and YOLOv8) for detecting 
marine objects in challenging underwater conditions.  

• Conduct a comprehensive experimental study on three 
different underwater benchmark datasets to determine the 
most effective object detection approach for AUVs. 

II. METHODS AND MATERIALS  

A. Overall Framework  

Fig.1 presents the overall framework of the underwater 
object detection network proposed in this study. Three 
publicly available underwater image datasets were employed 
to train the YOLO (You Only Look Once) models [9],  
providing a diverse range of images with varying lighting 
conditions, water depths, and underwater scenes. Initially, 
images undergo pre-processing via augmentation and an 
underwater image-enhancement pipeline. The resulting 
image, along with the original image, is then utilized as input 
data for the object-detection network. Three YOLO 
frameworks (namely, YOLOv5, YOLOv7, and YOLOv8) are 

used to detect and recognize objects. The performance of the 
trained models was evaluated on the test sets of the three 
publicly available underwater image datasets. 

B. Underwater Datasets 

This paper employs three publicly available datasets for 
underwater object detection. The underwater robot 
professional contest 2021 (URPC2021) dataset [10], the 
Brackish dataset [11], and the Aquarium dataset [12] were 
used for training underwater object detection algorithms. 
Fig.2 illustrates the statistical data that displays the number of 
targets in each dataset. 

The URPC2021 dataset is an underwater robot 
professional contest dataset of 2021, which was created to 
evaluate the performance of underwater object detection 
algorithms. The dataset consists of 8200 underwater images 
that were extracted from videos captured by an underwater 
robot ROV in natural environments. The dataset includes box-
level annotations for four categories of objects: holothurian, 
echinus, starfish, and scallops. The echinus category stands as 
the most prevalent class, followed by starfish, holothurian, and 
scallop, in terms of abundance, as shown in Fig.2 (a). 

The Brackish dataset, created in 2019, is an underwater 

dataset comprising more than 14,000 frames. It was created by 
annotating real filmed underwater videos and encompasses six 
distinct classes of underwater objects: Big fish, Crab, 
Jellyfish, Shrimp, Small fish, and Starfish. The dataset was 
collected using three mounted cameras positioned on the 
seabed, resulting in a diverse collection of images and 
viewpoints. 

The Aquarium dataset is relatively smaller, consisting of 
only 638 images collected from two aquariums. However, it 
still contains multiple bounding boxes with seven different 
classes of underwater objects, which include fish, jellyfish, 
penguin, puffin, shark, starfish, and stingray. The dataset was 
labelled for object detection. 

Fig.2. Statistical distribution of targets in each dataset. 
(a) URPC2021 dataset, and (b) Brackish dataset 

Fig.1.  General framework of the object detection architecture  
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C. Underwater Image Preprocessing 

Images captured underwater suffer from low visibility and 
colour distortions caused by light scattering by particles in the 
water and wavelength-dependent light absorption, unlike 
images taken on the surface. Light absorption results in 
significant colour distortion and loss of image information, 
while light scattering produces haze effects, suppresses image 
details, and reduces image contrast [13]. Detecting underwater 
objects using cameras is challenging due to these negative 
effects, as well as other complex background interferences 
such as camera shaking and non-uniform illumination, 
affecting real-time detection performance underwater. Fig. 3 
shows some low-quality underwater images taken from the 
URPC2021 dataset. Image (a) depicts a low-resolution 
underwater image. In image (b), a noticeable colour bias is 
present, and the overall style appears to be dominated by green 
tones. Image (c) exhibits a haze effect caused by light 
scattering in underwater environments. The issue with image 
(d) lies in its low contrast and the presence of a colour cast. To 
improve the visual quality of such underwater images and to 

enhance the detection accuracy, underwater image pre-
processing, such as image enhancement or restoration, is an 
essential step [14].  

In this study, underwater image enhancement techniques, 
such as dehazing, colour correction, and contrast enhancement 
have been applied to remove haze and the colour cast from 
images [15][16]. The enhancement technique used in this 
paper is based on a single-image approach that enhances 
underwater images without requiring prior knowledge of light 
properties or imaging models [17][18]. The image 
enhancement module consists of a series of independent 
processing steps. These steps are designed to effectively 
correct the degraded images and enhance their quality for 
improved object recognition. 

D. Underwater Object Detectors 

The objective of a contemporary object detector is to 
identify both the location and type of object in every input 
image. The state-of-the-art detectors consist of three primary 
components: a backbone that extracts features and generates a 
feature map representation of the input image through a 
reliable image classifier, a neck that is connected to the 
backbone and functions as a feature aggregator by assembling 
feature maps from various stages of the backbone and 
integrating these multi-level features, and a head that 
identifies bounding boxes and conducts classification 
predictions [19], as shown in Fig. 1. 

The present study utilized YOLO architectures for 
underwater object detection. YOLO has gained widespread 
use as a real-time object detection system due to its 
exceptional speed and accuracy, resulting in its popularity in 
various fields like robotics, autonomous vehicles, and video 
surveillance. Specifically, three advanced YOLO detectors - 
YOLOv5, YOLOv7, and YOLOv8 - were compared in this 
study. YOLOv5 is a single-stage object detection algorithm, 
which is more efficient and versatile than its earlier iterations 
[20]. During evaluation on the MS COCO dataset test-dev 

2017, YOLOv5 achieved an AP of 50.7% with an image size 
of 640 pixels. Additionally, YOLOv5 is known for its ease of 
use, training, and deployment. YOLOv7 is a modified version 
of YOLOv5, incorporating several enhancements, including 
the use of residual blocks, skip connections, and anchor boxes, 
to improve both accuracy and speed while reducing false 
positives [21]. YOLOv8 [22], which was recently introduced 
by Ultralytics, claims to be the current leader in real-time 
object detection. It offers faster processing speeds than 
previous versions of YOLO and supports state-of-the-art 
computer vision algorithms, such as instance segmentation 
and image classification. 

E. Model Evaluation Measures 

The standard metrics in object detection were used for 
evaluation and comparison of the models, including, 
precision, recall, precision-recall curve, average precision 
(AP), and mean average precision (mAP) with intersection 
over union (IoU).  

Precision is the fraction of correct detections among all 
the detections made by the model, while Recall is the fraction 
of correct detections among all the true objects in the scene. 
Higher values of both metrics indicate better performance.  

Intersection over Union (IoU) measures the overlap 
between the predicted bounding box and the ground truth 
bounding box. For example, how much of the picture does the 
predicted bounding box cover? An IoU value of 1.0 indicates 
a perfect overlap, while values closer to 0 indicate little to no 
overlap.  

Average Precision (AP) measures the average precision 
across all recall values. A higher AP value indicates better 
performance. Mean Average Precision (mAP) is the average 
AP value across all object classes. It is commonly used in 
object detection competitions to evaluate the overall 
performance of a model.  
• mAP@ 0.5: is the average of AP of all pictures in each 

category when IoU is set to 0.5.  
• mAP@ 0.5:0.95: This is the average of mAP considering 

different IoU thresholds (from 0.5 to 0.95 in steps of 0.05) 

III. EXPERIMENTS AND DISCUSSIONS 

This section presents the implementation details and the 
experimental results of the proposed framework along with 
detailed discussions. 

A. Experimental details 

This study utilized the NTNU's IDUN computing cluster 
[23] for all experiments and implementations. The cluster 
comprises over 70 nodes and 90 general-purpose graphics 
processing units (GPGPUs), each of which is equipped with 
at least 128 GB of main memory and two Intel Xeon cores and 
is connected to an Infiniband network. Half of the nodes are 
fitted with two or more NVIDIA Tesla P100 or V100 
GPGPUs. For training and testing YOLO models, the study 
employed CUDA 11.7, the PyTorch 2.0 framework, anaconda 
3 with Jupyter Notebook, and Python 3.9.12.  

The training epochs were set to 150 for the YOLO models. 
YOLOv5 and YOLOv8 models were trained on input images 
of size 640 × 640. In contrast, YOLOv7 was trained on size of 
416 × 416 input images. All three models utilized stochastic 
gradient descent (SGD) as the default optimizer. The 
hyperparameters used for training and testing the models are 
summarized in Table 1. The image pre-processing method is 
applied to the training dataset that involves data preparation, 
noise reduction, augmentation, and image enhancement. In 
addition, we generated annotations in YOLO format, along 

Fig.3 Example of an underwater images on the URPC2021 dataset. 
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with configuring parameters within the pre-trained models. 
All three datasets (Aquarium, Brackish and URPC2021) used 
in this experiment were split into training (80%), validation 
(10%) and testing (10%).  

Table 1. Parameters used in the experiment. 

YOLO 
Model 

Batch 
size 

epochs Learning 
rate  

Weight 
decay 

Input 
shape  

YOLOv5s 32 150 0.01 0.0005 640 × 640 
YOLOv7x 16 150 0.01 0.0005 416 × 416 

YOLOv8 32 150 0.001 0.001 640 × 640 

B. Experimental Results 

Before implementing the underwater image enhancement 
algorithm, we conducted an experiment on the original 
datasets to identify the dataset that posed a great challenge for 
our object detection task. Our preliminary analysis of the 
Aquarium and Brackish datasets revealed that the YOLO 
models performed exceptionally well, exhibiting high 
precision, recall, and mean average precision (detailed 
performance scores can be found in Table 2). Conversely, the 
models yielded unsatisfactory results on the UPRC2021 
dataset. The poor results obtained from the models can be 
attributed to the significant challenges posed by the complex 
environments present in the UPRC2021 dataset. These 
challenges include low resolution, haze due to motion blur, 
low contrast and colour cast as well as the frequency of 
smaller objects in a complex underwater environment. Fig.4 
demonstrates an instance of the original distorted images 
(Fig.4a) from the URPC2021 dataset alongside its 
corresponding enhanced images (Fig.4b), obtained through 
the underwater image enhancement algorithm. 

In order to improve the recognition performance of pre-trained 
YOLO models, a combined approach is employed, utilizing 
both enhanced images and the original images as inputs for 
the object-detection network. Fig.5 illustrates the detection 
results in terms of mAP@0.5, comparing the performance 
with and without the image enhancement algorithm at 100 
epochs. The model trained with image enhancement 
demonstrates superior performance compared to the model 

trained solely on the raw dataset. Notably, there is a significant 
increase of 3% in mAP for YOLOv5 and YOLOv7 and a 4% 
increase for YOLOv8. Fig. 6 shows the visualization of 
detection results on the URPC2021 dataset, where the 
different coloured squares in the figure represent the various 
targets in each YOLO model, such as echinus (red), 
holothurian (pink), starfish (yellow), and scallop (orange) in 
YOLOv5 and YOLOv8. YOLOv5 identified 3 bounding 
boxes for echinus, 2 for starfish, and 1 for holothurian, all with 
relatively high confidence scores. Despite the demonstrated 
improvement in performance using the image enhancement 
algorithm, YOLOv7 and YOLOv8 models still face 
challenges in accurately detecting Holothurian species, 
resulting in instances of missed detections. This is evident in 
Fig.6 where YOLOv5 successfully detects all classes, while 
YOLOv7 and YOLOv8 failed to detect Holothurian (i.e., 
missing detection) and exhibit occurrences of false detection 
in the URPC2021 dataset. The detection results on the 
brackish are visualized in Fig.7. It was observed that all three 
models successfully detected all the fish species (shrimp, 
starfish, and 2 crabs), with YOLOv5 and YOLOv8 having 
nearly equal recognition performance. Fig.8 illustrates an 
example of the results of using the testing dataset for the 
Aquarium dataset and shows the detection output of three 
different YOLO models, namely YOLOv5, YOLOv7, and 
YOLOv8. These models were able to detect all fishes and 
stingrays, demonstrating their flexibility to model and predict 
on various dimensions and scales. They were also able to 
handle the complexity of distinguishing between the 
underwater animals (such as fish and stingray) and the 
background, a significant challenge in underwater image 
analysis. Of the three models, YOLOv7 demonstrated the 
highest confidence value for detecting the stingray, with a 
value of 0.99. YOLOv8 came in second with a confidence 
value of 0.94, and YOLOv5 had the lowest confidence of 0.87.  

Fig. 4. Sample underwater images on the URPC2021 dataset: 

(a) Original images (b) Enhanced images. 

 

Fig.6. Detection outputs on UPRC2021 dataset: (a)YOLOv5, 
b) YOLOv7, (c) YOLOv8. 

Fig.8. Detection outputs on Aquarium dataset: (a)YOLOv5, 
b) YOLOv7, (c) YOLOv8. 

Fig.7. Detection outputs on Brackish dataset: (a)YOLOv5, 
b) YOLOv7, (c) YOLOv8. 

Fig.5. Comparison of mAP@0.5 for 100 epochs. Training with image 
enhancement shows a greater improvement in mAP compared to training 
without image enhancement for (a) YOLOv5 and (b) YOLOv8. 

P
er

fo
rm

an
ce

 

108



The PR curves of all classes for the YOLO models, along 
with the overall class curve, are depicted in Fig.9 to 
demonstrate their performance on the Brackish dataset. The 
average of all mAP classes was used to calculate the overall 
class curve. YOLOv5 and YOLOv8 exhibited nearly equal 
performance with the largest area under the curve in the figure, 
indicating better detection results for all target classes, 
especially for ‘crabs’, and ‘starfish’, with AP values of 99.5%. 

The mAP@0.5 value for YOLOv5 and YOLOv8 was 99% 
approximately. Conversely, YOLOv7 had the lowest area 
under the PR curve, resulting in a lower mAP value. Certain 
classes, like 'crab' and 'starfish,' are generally easier to detect 
due to their prevalence on the seafloor. In contrast, the 'small 
fish' and 'jellyfish' classes pose greater difficulty for models to 
learn because they can appear anywhere in the image with 
similar frequency and have relatively small sizes. Table 2 
provides a detailed comparison of the three YOLO models on 
the original and enhanced dataset of URPC2021, as well as the 
Brackish and Aquarium datasets. The comparison 
encompasses various metrics such as accuracy, speed, and 
latency, providing a detailed analysis of each model's 
performance across these all the datasets. A closer look at the 
table, it is evident that the detection results on the URPC2021 

enhanced dataset exhibit higher performance in terms of all 
the accuracy metrics compared to those on the original dataset. 
This highlights the effectiveness of image enhancement in 
improving the detection accuracy on the URPC2021 dataset. 

On the URPC2021 enhanced dataset and Aquarium 
dataset, YOLOv7 achieved the highest performance values 
across all metrics measured. However, when applied to the 
Brackish dataset, YOLOv7 exhibited lower performance 
compared to other models. YOLOv5 and YOLOv8 exhibited 
excellent recognition performance on the Brackish dataset, 
outperforming YOLOv7 with the highest mean average 
precision (mAP@0.5) value of 99%. When considering recall, 
the YOLOv5 model exhibited superior performance 
compared to YOLOv7 and YOLOv8, achieving a value of 
98.5%. On the other hand, YOLOv8 attained the highest 
performance with mAP@0.5:0.95 value of 85.6%, as shown 
in Table 2. Although YOLOv8 is claimed to be state-of-the-
art and is expected to surpass previous versions of YOLO 
models in terms of performance, the detection outputs 
achieved on the three underwater datasets were slightly 
similar to those obtained with YOLOv5 across all evaluation 
metrics. However, since the YOLOv8 research is still in 
progress, it is challenging to exploit its full potential. 

In addition to the detection accuracy metrics, the 
computational complexity of the YOLO models is provided in 
terms of FPS (frames per second), GFLOPS (giga floating 
point operations), and parameter size, as shown in Table 2. 
FLOPs and FPS are metrics that respectively gauge the 
computational complexity and detection speed of a detector, 
while parameter size determines the deployability of the 
detector. In terms of GFLOPS, the YOLOv5 architecture 
demonstrates an estimated computational cost of 16 GFLOPS, 
outperforming YOLOv7 and YOLOv8 across all three 
datasets (Aquarium, Brackish, and URPC2021). This 
indicates that YOLOv5 requires less computational power for 
object detection tasks compared to the latest versions.  
Additionally, YOLOv5 excels in terms of parameter size, 
making it more suitable for real-time detection and deployable 
on computing-constrained underwater vehicles such as AUVs 
(autonomous underwater vehicles). With FPS, the YOLOv5 
model achieved the highest FPS on the Aquarium dataset at 
135 and on the URPC2021 dataset at 169 when executed on a 
Tesla V100 GPU. In contrast, YOLOv7 had the lowest FPS 
on these two datasets. On the Brackish dataset, YOLOv8 
outperformed the other YOLO models with the highest 
execution speed of 162 FPS. However, it had relatively a 
slower FPS on the UPRC2021 dataset. 

In general, YOLOv5 can be optimized to deliver 
competitive detection performance while utilizing fewer 
FLOPS and achieving higher speeds. This can make it a good 
choice for AUVs that possess limited computing capability 

Table 2: Performance results of the different YOLO models on the different datasets, including the enhanced URPC dataset. 
background. highlighting. 

Fig.9. The precision-recall curve of (a)YOLOv5, (b)YOLOv7, 
and (c)YOLOv8 on Brackish dataset. 
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and memory, as it meets their requirements effectively. 
Despite their slightly lower inference speed compared to 
YOLOv5, both YOLOv7 and YOLOv8 can provide 
preferable options for AUVs in terms of robustness and 
detection performance in complex underwater environments. 

IV. CONCLUSIONS 

Achieving efficient recognition of objects underwater has 
been one of the main objectives of autonomous underwater 
vehicles (AUVs). This paper explores the use of vision-based 
deep learning algorithms for automatic object detection in 
(AUVs) using challenging underwater scenes. Three publicly 
available underwater datasets, Aquarium, Brackish, and 
UPRC2021, were used to compare the performance of three 
detection algorithms, namely YOLOv5, YOLOv7, and 
YOLOv8. An underwater image enhancement pipeline was 
developed to improve and support the object detection task 
using these algorithms. The objective was to select the best 
algorithm or model that could be integrated as a target 
detection and recognition component of the AUV. The study 
demonstrates that YOLOv7 achieved superior accuracy and 
speed in detecting underwater objects on the Aquarium and 
enhanced version of the URPC2021 dataset, achieving 
precision rates of 98% and 92% respectively. However, it 
struggled with inference time when tested on the Tesla V100 
GPU, resulting in slower execution speed compared to other 
YOLO models. YOLOv8 shows a good balance of accuracy 
and speed, while YOLOv5 provides the best inference times 
on GPU. On the Aquarium and UPRC2021 datasets, YOLOv8 
and YOLOv5 achieved nearly equal performance in terms of 
precision, recall, mAP@0.5, and mAP@0,5:0.95, but 
YOLOv5 was the fastest algorithm that outperformed both 
YOLOv7 and YOLOv8 across all three datasets. 

Overall, the study highlights the potential of vision-based 
deep learning algorithms in underwater object detection and 
uses an image enhancement algorithm for improving system 
performance. The lack of high-quality underwater datasets 
and images remains a significant challenge in the development 
of target detection in underwater environments. Future 
research efforts will focus on optimizing the most effective 
models by collecting a large and diverse set of underwater 
datasets and employing image enhancement techniques to 
improve the overall quality of underwater images, which are 
crucial for the practicality of the system in real-world 
applications. 

ACKNOWLEDGMENT 

This research work was supported by the ADRIATIC 
project (cooperAtion unDerwater foR effIcient operATions 
vehICles) co-funded by the MarTERA partners Romanian 
Executive Unit for Financing Higher Education, Research, 
Development and Innovation (UEFISCDI), the Scientific and 
Technological Research Council of Turkey (TÜBITAK) and 
the Research Council of Norway (RCN) and the European 
Union. 

REFERENCES 

[1] Z. Liu, M. Ling, T. Zhu, and D. Xu, “Safety Analysis of Shrinkage 
Monitoring Equipment in Marine Resource Exploration,” J. Coast. 
Res., 2020, doi: 10.2112/JCR-SI105-051.1.  

[2] H. Ghafoor and Y. Noh, “An overview of next-generation underwater 
target detection and tracking: An integrated underwater architecture,” 
IEEE Access. 2019. doi: 10.1109/ACCESS.2019.2929932.  

[3] K. Liu and Y. Liang, “Enhancement of underwater optical images 
based on background light estimation and improved adaptive 
transmission fusion,” Opt. Express, 2021, doi: 10.1364/oe.428626.  

[4] G. S. Kumar, U. V. Painumgal, M. N. V. C. Kumar, and K. H. V. 
Rajesh, “Autonomous Underwater Vehicle for Vision Based 
Tracking,” 2018. doi: 10.1016/j.procs.2018.07.021.  

[5] S. Villon, M. Chaumont, G. Subsol, S. Villéger, T. Claverie, and D. 
Mouillot, “Coral reef fish detection and recognition in underwater 
videos by supervised machine learning: Comparison between deep 
learning and HOG+SVM methods,” 2016. doi: 10.1007/978-3-319-
48680-2_15.  

[6] X. Wang, J. Ouyang, D. Li, and G. Zhang, “Underwater Object 
Recognition Based on Deep Encoding-Decoding Network,” J. Ocean 
Univ. China, vol. 18, no. 2, pp. 376–382, Apr. 2019, doi: 
10.1007/s11802-019-3858-x.  

[7] X. Sun et al., “Transferring deep knowledge for object recognition in 
Low-quality underwater videos,” Neurocomputing, vol. 275, pp. 897–
908, Jan. 2018, doi: 10.1016/j.neucom.2017.09.044.  

[8] M. Fulton, J. Hong, M. J. Islam, and J. Sattar, “Robotic detection of 
marine litter using deep visual detection models,” 2019. doi: 
10.1109/ICRA.2019.8793975.  

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look 
once: Unified, real-time object detection,” 2016. doi: 
10.1109/CVPR.2016.91. 

[10] Z. Liu, Y. Zhuang, P. Jia, C. Wu, H. Xu, and Z. Liu, “A Novel 
Underwater Image Enhancement Algorithm and an Improved 
Underwater Biological Detection Pipeline,” J. Mar. Sci. Eng., 2022, 
doi: 10.3390/jmse10091204.  

[11] A. Jesus, C. Zito, C. Tortorici, E. Roura, and G. DeMasi, “Underwater 
Object Classification and Detection: First results and open challenges,” 
2022. doi: 10.1109/OCEANSChennai45887.2022.9775417. 

[12] Roboflow,  “Underwater  Object  Detection  Dataset,” Kaggle, 2020. 
https://www.kaggle.com/datasets/slavkoprytula/aquari um-data-cots  

[13] J. Y. Chiang and Y. C. Chen, “Underwater image enhancement by 
wavelength compensation and dehazing,” IEEE Trans. Image Process., 
2012, doi: 10.1109/TIP.2011.2179666.  

[14] C. Li et al., “An Underwater Image Enhancement Benchmark Dataset 
and beyond,” IEEE Trans. Image Process., 2020, doi: 
10.1109/TIP.2019.2955241.  

[15] M. Afifi, B. Price, S. Cohen, and M. S. Brown, “When color constancy 
goes wrong: Correcting improperly white-balanced images,” 2019. doi: 
10.1109/CVPR.2019.00163.  

[16] Y. Wang, W. Song, G. Fortino, L. Z. Qi, W. Zhang, and A. Liotta, “An 
Experimental-Based Review of Image Enhancement and Image 
Restoration Methods for Underwater Imaging,” IEEE Access. 2019. 
doi: 10.1109/ACCESS.2019.2932130.  

[17] Y. T. Peng, K. Cao, and P. C. Cosman, “Generalization of the Dark 
Channel Prior for Single Image Restoration,” IEEE Trans. Image 
Process., 2018, doi: 10.1109/TIP.2018.2813092.  

[18] P. Drews-Jr, E. Do Nascimento, F. Moraes, S. Botelho, and M. 
Campos, “Transmission estimation in underwater single images,” 
2013. doi: 10.1109/ICCVW.2013.113.  

[19] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using 
YOLO: challenges, architectural successors, datasets and 
applications,” Multimed. Tools Appl., 2023, doi: 10.1007/s11042-022-
13644-y. 

[20] U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and 
YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs,” 
Sensors, 2022, doi: 10.3390/s22020464.  

[21] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: 
Trainable bag-of-freebies sets new state-of-the-art for real-time object 
detectors,” Jul. 2022, [Online]. Available: 
http://arxiv.org/abs/2207.02696  

[22] J. Solawetz and Francesco, “What is YOLOv8? The Ultimate Guide.,” 
Roboflow, 2023.  

[23] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC: An 
Energy-Efficient, High-Performance GPGPU Computing Research 
Infrastructure,” pp. 1–6,  2019, [Online].
 Available:http://arxiv.org/abs/1912.05848 

 

110



Wild Animal Species Classification from Camera
Traps Using Metadata Analysis

Aslak Tøn∗, Ali Shariq Imran† and Mohib Ullah‡
Department of Computer Science, Norwegian University of Science and Technology, 2815 Gjøvik, Norway

Email: ∗aslakto@stud.ntnu.no, †ali.imran@ntnu.no, ‡mohib.ullah@ntnu.no

Abstract—Camera trap imaging has emerged as a valuable tool
for modern wildlife surveillance, enabling researchers to monitor
and study wild animals and their behaviours. However, a signifi-
cant challenge in camera trap data analysis is the labour-intensive
task of species classification from the captured images. This study
proposes a novel approach to species classification by leveraging
metadata associated with camera trap images. By developing
predictive models using metadata alone, we demonstrate that
accurate species classification can be achieved without accessing
the image data. Our approach reduces the computational burden
and offers potential benefits in scenarios where image access is
restricted or limited. Our findings highlight the valuable role
of metadata in complementing the species classification process
and present new opportunities for efficient and scalable wildlife
monitoring using camera trap technology.

Index Terms—Metadata, Camera trap imaging, Neural net-
works, Data fusion, Scene recognition.

I. INTRODUCTION

Human-induced influences like climate change [1], [2],
deforestation [3], and trafficked roads [4], [5] have resulted
in a dramatic wildlife strain, ushering in an era termed ”An-
thropocene” [6]. Monitoring such habitats [7], [8] is crucial,
as shown by the 2019-20 Australian wildfires [9]. Camera
traps offer rich insights [10]–[12], but growing data volumes
necessitate robust filtering [13], [14]. Databases like LILA BC
and the Snapshot Serengeti (SS) dataset [15] exist, and this
paper utilizes a smaller dataset from the Norwegian Institute
for Nature Research [16]. Past studies mainly employed im-
age analysis for species identification [13], [14], [17], with
few incorporating metadata [18]–[20]. Our study emphasizes
metadata’s significance, defining explicit metadata as data
accompanying the image (like temperature, date, and location)
and implicit metadata as indirect information about the image
itself (like scene descriptors and attributes), extracted using
pre-trained models on the places365 dataset [21]. We advance
species classification by using metadata alongside image data,
enhancing accuracy in camera trap research. The paper pro-
ceeds with: Related work in section II, section III discusses
the methodology for data acquisition and how the classification
was done, Results and discussion is in section IV, and finally
we conclude our findings in section V.

II. RELATED WORKS

Although there are numerous papers discussing various
aspects of metadata usage, limited attention has been given to
its direct application for classification purposes. In this section,

we explored related works concerning image classification,
explicitly focusing on animals. For example, Norouzzadeh et
al. [13] suggest image classification is enhanced by object
detection, filtering irrelevant background data without requir-
ing additional resources. They used an existing pre-trained
model for object detection, achieving an accuracy of 91.71%,
precision of 84.47%, and recall of 84.24%. Animals in each
scene were counted via bounding boxes, and the kind of animal
in non-empty images was identified. Despite an imbalanced
dataset, they achieved high accuracy for the majority of classes
and an overall accuracy of 91.37%. The paper also explores
active learning methods. Norouzzadeh et al. [14] focuses on
animal classification, object counting [22], action recognition
[23], and detecting children’s presence. Their multi-stage fu-
sion network outperforms a full classifier model, tackling four
objectives: animal species classification [24], social interaction
[25], animal count [26], and attribute addition [27]. They
achieved 96.8% accuracy with VGG [28] network for the first
task, top-1 accuracy of 94.9%, and top-5 accuracy of 99.1%
for the second. Binned animal count achieved 62.8% accuracy
and 83.6% when counting within one bin. Action detection
yielded 75.6% accuracy, 84.5% precision, and 80.9% recall.
Similarly, Schindler et al. [29] proposes a two-stage fusion
network using Mask R-CNN for animal classification and
action determination. Temporal data from the video were used
for action recognition, with variations of ResNet-18 handling
3×T ×H ×W frame input. The SlowFast network proposed
by [30] underperformed. The authors also present their own
accuracy metrics for segmentation, with the best segmentation
method achieving 63.8% average precision and 94.1% action
detection accuracy.

III. METHODOLOGY

A. Acquisition

The acquisition of the NINA Viltkamera dataset metadata is
a complex task. All images and their corresponding metadata
are publicly available on the Norwegian Institute for Nature
Research (NINA) website. However, direct downloading is
not feasible due to the extensive number of potential unique
URLs. Therefore, we resorted to web scraping to acquire the
necessary data. Within the website’s interactive map, each
camera trap pin held specific metadata. By creating a script,
we automated the extraction process of these URLs and their
corresponding metadata. Each URL was linked to a JSON
object under the ”VM” entity on the website. This JSON object

979-8-3503-4218-5/23/$31.00 ©2023 IEEE
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contained essential metadata like the filename and a foreign
key referencing the species id (NOR: ”FK ArtID”). To link
the foreign key with the species name, we utilized the function
”vm.arter()”. Furthermore, the ”vm.lokaliteter()” function was
used to map the location ID to its corresponding latitude and
longitude. This strategy allowed us to automate the extraction
of metadata, which was essential for our study. In total, meta-
data was collected for 170 thousand camera trap images. These
samples were split into 65 original classes. These classes were
severely imbalanced, to the point where some classes had
one or two samples. To combat this, we employed both class
combination and data augmentation. More information on this
is discussed in Section III-B. In terms of additional metadata,
temperature data was often missing. To fill in these gaps,
we used the Norwegian Metrological Institute’s Frost API1.
This API provided temperature data from the nearest weather
station to the camera trap. We limited temperature readouts to
within a 24-hour window of the image capture time. This still
left some missing temperature values (16 thousand samples);
these were set to the average temperature of the entire dataset.
The date and time were stored as a one-hot encoded vector,
dubbed the “datetime” vector. This preserves the cyclical
nature present in time data while eliminating any ambiguity
that may arise. We first considered a sine curve to represent
time, as this would also capture the cyclic nature of time.
However, this may have confused, as spring and fall would
result in the same values. In the same vein, dawn and dusk
would also result in the same values. Latitude and longitude
were also included to capture potential geographical variations
in animal distribution. It is important to note that the positional
data acquired is only approximate, as the locations of the pins
are only accurate to within about a kilometre radius. Lastly,
implicit metadata was obtained through pre-trained models on
the Places365 dataset. This provided us with scene attributes
and scene descriptors, which offered extra context for species
identification. To prevent computation delays during model
training, these attributes were pre-extracted and stored along-
side the image metadata.

B. Class Imbalance

As mentioned previously, the 170 thousand data points
collected were severely imbalanced. The largest class “Roe
Deer” consisted of 53 thousand samples alone, while other
classes, like “Lemmings” only had three. The birds were es-
pecially prone to low sample size, as each individual species of
bird was catalogued. Two methods were used to combat this:
Class combination and data augmentation. Class combination
combines certain classes, like the different bird species, into
one larger super-class. In the case of bird species, we com-
bined them to form the “Bird” superclass. Other classes were
similarly combined, “Rodent” became one superclass, as did
“Deer”. In total, with these combinations, we ended up with
25 classes. Furthermore, to balance out the class representation
when running deep learning, we utilized Borderline Synthetic

1https://frost.met.no/index.html

Minority Oversampling Technique (Borderline SMOTE) [31].
Borderline SMOTE generates more valuable sample points
than the regular SMOTE algorithm. Borderline SMOTE gener-
ates synthetic samples on the boundary region between classes,
which gives the network more hard-to-tell samples, which
should provide more benefit during training.

C. Noisy Labels

One issue with this dataset is the lack of validation on
the said dataset. Several samples with one given class were,
in fact, a different class (see Fig. 1). Unfortunately, due to
the sheer number of samples, combined with the lack of
relevant expertise from the authors of the paper, reclassifying
the animals is infeasible. Luckily, the vast majority of labels
are correct, with only around 0.5%−1% of labels being wrong.

D. Evaluation metrics

Our study primarily focuses on two significant metrics:
Accuracy and the Cohen Kappa Score. Accuracy quantifies
the fraction of true results (including both true positives
TP and true negatives TN ) in the total number of samples
analyzed. Formally, Accuracy is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Where:

• TP stands for True Positives: the number of samples
correctly classified to class yi.

• TN represents True Negatives: the samples correctly not
assigned to class yi.

• FP is False Positives: the samples wrongly assigned to
class yi but should have been classified to a different class
yj .

• FN denotes False Negatives: the samples that should
have been classified to yi but were classified to yj .

This metric provides a view of our model’s overall perfor-
mance. Due to the imbalanced nature of our dataset, we
opted to use a metric sensitive to prediction accuracy that
accounts for class imbalance. Thus, we incorporate the Co-
hen Kappa Score. The Cohen Kappa Score measures the
agreement between two raters who classify N items into C
mutually exclusive classes. The score calculates the possibility
of the agreement occurring by chance (pe) and the observed
agreement (po). Initially, the probability of random agreement,
pe, is calculated as:

pe =
1

N2

C∑
k=1

n
(1)
k n

(2)
k

Here, n(i)
k is the number of times the rater i predicted class

k. Next, the observed agreement, po, is calculated as:

po =

∑C
i=1 xi,i∑C

i=1

∑C
j=1 xi,j
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Fig. 1: Animal misclassifications. All are labelled as “Sheep”

Here, the elements xi,j constitute the observed response matrix
M . Finally, the Cohen Kappa Score (κ) is calculated using
these probabilities:

κ =
po − pe
1− pe

This score provides a more robust measure than accuracy
as it considers both the class imbalance and the probability
of a correct prediction occurring by chance, offering a more
nuanced view of our model’s performance.

E. Classification

To properly evaluate what effects metadata would have on
classification, we need to perform an exhaustive search of
the classes and features available. This involves classifying n
classes using m features, where n ≥ 2 and m ≥ 1. To run all
these combinations, we would have a total of 1, 040, 186, 586
individual cases to test. This amount of computation is cur-
rently unrealistic. Instead, we opted to look at a subset of the
classes. The classes we decided to investigate were: ‘Fox’,
‘Deer’, ‘Mustelidae’, ‘Bird’, ‘Lynx’, ‘Cat’, ‘Sheep’, ‘Rodent’,
and ‘Wolf’. We also combined temperature and position into
one feature. The reasoning is that the single data point of
temperature would likely not be a perfect classifier. This
left us with nine classes and four features that could be
included or excluded. This gives a more manageable 7529
combination that we exhaustively classify. We focused on the
quantitative study of all permutations of animals and metadata
information. We used a 4-layer fully connected network, with
batch normalization and dropout between each layer to combat
overfitting. The hidden layers were static, having 64 and 32
neurons, respectively. The input layer had a dynamic number
of neurons equal to the number of input features currently
selected. Likewise, the output layer was set to the current
number of classes to be classified.

F. Data Visualization

Another efficient way of assessing if metadata can be used
to classify different species is the use of data visualization
tools. Our data consists of 538 data points, meaning we could
map the data in a 538-dimensional space and assess what
groupings are present in the data. As no currently known
technique exists for viewing visual information above three
dimensions, four if you include temporal information, we

had to rely on dimensionality reduction techniques instead.
Dimensionality reduction, in general, aims to preserve the
structure of the data as much as possible while reducing
the overall information saved for each data point. Our paper
utilizes a new approach to dimensionality reduction proposed
by [32]. Uniform Manifold Approximation and Projection, or
UMAP for short, utilizes topology, higher dimensional mani-
folds, and graph theory in order to project high dimensional
data down to a lower dimension while minimizing the cross
entropy between the original projection and the re-projection.
The algorithm has been demonstrated to equal or outperform
other popular dimensionality reduction techniques such as t-
SNE [33], LargeVis [34], and Laplacian eigenmaps [35]. The
theory behind UMAP is quite involved, requiring a good
understanding of the topic of topology. However, an excellent
summary was given by [36]. They break down the process into
two major steps and a couple of minor steps in each major
step as so:

1 Learn manifold structure
1.1 Finding nearest neighbours
1.2 Constructing neighbours graph

1.2.1 Varying distance
1.2.2 Local connectivity
1.2.3 Fuzzy area
1.2.4 Merging of edges

2 Finding low-dimensional representation
2.1 Minimum distance
2.2 Minimizing the cost function

Utilizing UMAP, we can investigate if any patterns emerge on
animal clusters. If we find local clusters in the dimensionality-
reduced space, we can expect those same patterns to hold in
the original 538-dimensional space we cannot investigate.

G. Implementation Details

To create and run the models, we used Python program-
ming language, with PyTorch [37] framework for creating,
importing, and training models. The models primarily used
categorical cross-entropy [38] as the loss function and the
Adam optimizer [39]. The networks were mainly created and
trained on a Linux computer using an intel-i9 12900KF, 128
Gigabytes of RAM and an RTX3080-Ti. All weights were
randomly initialized, with the optimizer set with an initial
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Classes Features used Acc κ

4, 6 Scene attributes 0.948 0.894
6, 12 Position and temperature, Scene attributes 0.982 0.945
4, 6 Places, Position and temperature, Scene attributes 0.967 0.932
6, 12 Datetime, Places, Position and temperature, Scene attributes 0.989 0.964
3, 4, 6 Scene attributes 0.87 0.779
3, 4, 6 Position and temperature, Scene attributes 0.869 0.782
3, 4, 6 Datetime, Places, Scene attributes 0.866 0.775
3, 4, 6 Datetime, Places, Position and temperature, Scene attributes 0.878 0.796
2, 3, 4, 6 Scene attributes 0.696 0.552
3, 4, 6, 12 Position and temperature, Scene attributes 0.731 0.603
3, 4, 6, 12 Datetime, Position and temperature, Scene attributes 0.729 0.614
3, 4, 6, 12 Datetime, Places, Position and temperature, Scene attributes 0.746 0.63

TABLE I: Metadata Predictors Scores

learning rate of 1e − 3. The learning rate was then reduced
by an order of magnitude every seven epochs, and a total of
25 epochs ran for each model. The samples were split into
mini-batches of 64. For each epoch, the model was validated
using 10% of the test samples; if the model performed worse
than previous runs, it was reset back to its best-performing
iteration. Finally, the model was evaluated using 10% of the
data that was left aside before training started.

To ensure balanced representation in the training data. Bor-
derline SMOTE [31] was utilized. By having the same number
of samples from each class, the network cannot “cheat” by
only predicting the majority class to achieve an acceptable
result. The validation sets and testing sets were left unaltered.

IV. RESULTS AND DISCUSSION

We can see the results for two or three separate classes using
one, two, three or all four features. Looking at Table I, we see a
reasonably high accuracy for classifying some animal species,
despite not having any image data. We’ve decided to use an
ID for each species instead of the said species’ name. The
corresponding ID to species is 0: ‘Fox’, 1: ‘Deer’, 2: ‘Weasel’,
3: ‘Bird’, 4: ‘Lynx’, 5: ‘Cat’, 6: ‘Sheep’, 7: ‘Squirrel’, 8: ‘Rab-
bit’, 9: ‘Rodent’, 10: ‘Cattle’, 11: ‘Boar’, 12: ‘Wolf’, and 13:
‘Bear’. We see that the “Scene attributes” information yields
the best single feature to include in the prediction. We also see
as we increase the number of features included increases, the
best performer is still “Scene attributes”. However, including
extra attributes does yield diminishing returns. The average
performance of the different features is less clear-cut. We can
quantify this relation better by looking at the “winner” when
pitting n predictors against each other to predict between m
classes. By finding and counting the best predictor(s) for all
combinations of animals, we get Fig. 2. To save space, we
used abbreviated versions of the feature names, ‘SA’ equates
to scene attributes, ‘Pl’ is short for “Places” which are the
Scene descriptors, ‘DT’ is the datetime vector, and ‘P & T’ is
the position and temperature information. We see that “Scene
attributes” is the clear best single predictor. However, it is
not among the pair of best predictors, being beaten out by the
combination of “Datetime” and “Places”. Its worth noting that
this method of counting the winner does not take into account

(a)

(b)

(c)

Fig. 2: The best n features to use to distinguish a set of m
animals
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how much better one predictor performed than another. We do
not know whether “Scene Features” dominated the competition
as the singular feature or if other features were close seconds
to the best performance of “Scene Features”. However, we
can conclude that accuracy, in general, improves when more
features are included. Meaning all the metadata contributes
something valuable to the prediction of the animal feature.
Remember that these predictions of animal classes are purely
based on the metadata information, no image of the animal is
given to the model, yet it can quite confidently predict between
two classes.

Fig. 3: Prediction score versus the number of classes to
distinguish

The prediction score does steadily decrease as more classes
are included. Fig. 3 demonstrates this clearly. We postulate this
is due to the increased homogeneous actions of the animals.
Some animals may be active during the daytime, others during
nighttime; some are preferentially spotted in some locations,
while others avoid those same locations. When we only have
two animals, we can use these facts to separate them. However,
once multiple animals act similarly, we can no longer separate
them purely using this metadata, and image data are required.
This issue of reduced performance when more classes make
intuitive sense. It is harder to guess between 5 categories than
it is to guess between only two. However, the kappa score
should account for this increased performance of randomly
guessing the correct class, but it is also declining. Some of
the explanations for this can be seen by using UMAP. Fig. 4a
shows Mustelidae cleanly separating into its own cluster. This
indicates that some higher dimensional line can be drawn that
can confidently classify Mustelidae away from other animals.
However, once we remove many of the classes, we find that
UMAP no longer cleanly separates these classes. This problem
can be seen in Fig. 4b. We can summarize that metadata has
the ability to help differentiate species from each other without
the need for image data to be included. These findings are
more valuable when we include image data once again. By
designing networks that can incorporate metadata to image
feature extraction for networks, we believe we can enhance
the classification results over standard network architectures.
Metadata should prove even more helpful in cases where there
are few classes to choose from or where the existing classes
have distinct behavioural patterns that separate them from each

other at a metadata level, such as different biomes, locations,
or sleep schedules that result in image capture during different
hours.

(a) UMAP separating Mustelidae cleanly from other classes

(b) UMAP struggling to separate the remaining classes

Fig. 4: UMAP embedding of metadata features and classes

V. CONCLUSION

In our study, we have showcased the effectiveness of
utilizing explicit and implicit metadata associated with cam-
era trap images for animal prediction. The results obtained
highlight the potential of metadata-driven augmentation for
deep-learning approaches in the field of animal classification.
Building upon these findings, we recommend employing a
two-step classification process: First, identifying the appropri-
ate subgroups into which animals can be separated using the
available metadata and then utilizing more specific prediction
models to assign the final species label to each animal.
This coarse-to-fine classification methodology aligns well with
the outcomes and implications presented in the paper. Our
work holds promise for improving the overall accuracy and
efficiency of animal classification in camera trap research.
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ABSTRACT
The present study deals with white-box Neural Network
(NN) watermarking and focuses on the robustness property.
The first contribution consists of formalizing neuron permu-
tation as a geometric attack, thus demonstrating the very
existence of this class of attacks for NN watermarking. The
second contribution consists in devising and demonstrating
the effectiveness of the corresponding counter-attack. As a
side result, the possibility of extending NN white-box wa-
termarking scope beyond image classification is brought to
light. The experimental study considers three state-of-the-art
methods, four NN models, three tasks (image classification,
segmentation, and video coding), and five types of attacks.
We underline that none of the existing methods is robust
against the geometric attack, and using the counter-attack
advanced in this paper effectively ensures the robustness.

Index Terms— watermarking, neural network, white-box,
robustness, geometric attacks, counter-attack.

I. INTRODUCTION

Neural Networks (NN) are currently serving as enablers
for practically all multimedia-related tasks, such as image
classification, segmentation [1] or compression [2]. Design,
data collection, and training of NN require huge investment,
and protecting the underlying intellectual property rights is
not only an ethical issue but an economic one, as well.
Moreover, such applications can also be deployed in critical
contexts (e.g. autonomous driving), where it is key to verify
that the NN functioning has not been corrupted.

Watermarking represents a promising solution to the
above, and potentially other related problems [3], [4]. Wa-
termarking [5] originally refers to imperceptibly and persis-
tently embedding into multimedia contents some additional
information (referred to as watermark or mark) according to
a secret key. Inserted by an authorized user, the watermark
detection is expected to track down an unauthorized user
that would illicitly benefit from or modify that content.

Fig. 1: Neural network watermarking synopsis.

This generic framework inherited from multimedia realm
is to be reconsidered and extended to match the NN pecu-
liarities, as detailed here after and illustrated in Fig. 1. First,
the watermark is inserted into the NN model (defined as the
set of parameters of a neural network, including the input-
output functions). The watermark can be either retrieved
from the parameters of the model (the so-called white-box
methods [3], [6], [7]) or from the inference output by the
watermarked model (the so-called black box ones [4], [8]).
The data payload represents the size of the watermark, i.e.
the quantity of information to be inserted and detected.

Second, the imperceptibility refers to the impact (if any)
of the mark insertion in the task achieved by the NN.
For instance, watermarking a NN for image classification
is imperceptible when the class score distribution is not
modified.

Third, robustness is the property of recovering the mark
from the protected content even when it is subjected to
malicious or mundane operations (commonly referred to as
attacks).

Finally, the secret key refers to the information that should
be kept secret and implicitly ensures the method’s security
(in the Kerckhoff’s sense).

In practice, each watermarking method finds a trade-
off among these four properties, according to the actual
application constraints [5]. For instance, the authorized user
can trade the data payload for reaching prescribed impercep-
tibility and robustness. On the other side, the unauthorized
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user is expected to devise attacks that would abide to the
imperceptibility constraint, while decreasing the robustness
property.

The state-of-the-art analysis carried out in Section II
highlights two methodological limitations of the NN water-
marking landscape. First, the robustness is solely analyzed
against mundane modifications related to NN life cycle (like
pruning or fine-tuning, for instance) and implicitly assumes
that the unauthorized user would not make any malicious
attempt against the watermark. Secondly, although the NN
application field is so broad, classification seems to be the
only application benefiting from white-box watermarking.

The present study presents two contributions to the state-
of-the-art in white-box watermarking [3], [6], [7]. First, the
NN permutation attack [9] is formalized, thus demonstrating
the very existence of geometric attacks for NN watermark-
ing. Secondly, an effective counter-attack is devised and
investigated on tasks beyond classification. The experiemntal
study is based on three methods ( [3], [6], [7]), four archi-
tectures (VGG16, ResNet34, DeepLabV3, and DVC), three
tasks (image classification, segmentation, and video coding),
and five types of attacks (Gaussian noise, fine-tuning, prun-
ing, quantization, and permutation). Beyond analyzing the
threats and opportunities related to NN geometric attacks
and counter-attacks, this study serves as practical guidelines
when designing effective NN watermarking methods.

II. BACKGROUND AND PROBLEM STATEMENT

This section first introduces the attack taxonomy as in-
herited from multimedia watermarking, then sketches the
panorama of NN white-box watermarking solutions before
identifying the issues raised by NN permutation attack.

II-A. Watermarking robustness and attack taxonomy
Robustness is the property of detecting the watermark,

even when the watermarked model is subjected to modi-
fications commonly referred to as attacks. The robustness
is evaluated by assessing the ability to detect the water-
mark. For example, the BER (bit error rate) between the
inserted and the recovered watermark can be computed [3],
[6]. Alternatively, the correlation coefficient between the
inserted and detected watermarks might be computed [7].
Conceptually, when evaluating the robustness, no distinction
is made against mundane attacks (i.e. operations coming
across with the usual NN life-cycle, like fine-tuning for better
performances or pruning for lower footprint) and malicious
attacks (i.e. operations specifically designed by unauthorized
users to decrease the robustness).

In the multimedia realm, watermark attacks are classified
as removal attacks, geometric attacks, cryptographic attacks,
and protocol attacks. Removal attacks simply attempt to
make the watermark unreadable. Geometric attacks do not
try to remove the mark, but rather destroy the detector
synchronization. Cryptography attacks aim at detecting and

removing the watermark without any knowledge of the key,
exploiting the fact that the embedded watermark is public
and/or by assuming a detector (working with the proper key)
is available. Finally, protocol attacks are meant to create
ambiguity and confusion about watermark usage, even if
properly detected. Removal and geometric attacks intimately
relate to the insertion and detection methods. Cryptography
attacks relate to the system security and secret key manage-
ment and can be, for instance, based on known text attacks
or on oracle attacks, as inherited from cryptography [10].
Protocol attacks deal with the practical watermark usage,
as legal proof of copyright and/or integrity. The present
study will focus on removal and geometric attacks,
while the last two classes can be conceptually considered
complementary with respect to the paper scope.

II-B. White-box neural network watermarking

The earliest NN watermarking methods [3] considers
image classification, namely a wide residual network trained
on CIFAR10 dataset or Caltech-101. A binary watermark
of M bits is inserted in the so-called flattened version of
the layer l, where M is lower than the number of input
channels Nl−1. The key is represented by a random matrix
X ∈ RNl−1×M . The mark is embedded during training via
a regularization term minimizing the distance between the
watermark and the projection of the flattened watermarked
weights on the key. Watermark detection is achieved by
projecting the watermarked (and possibly attacked) layer on
the secret key, rounding the product results towards 0 or 1;
the BER with respect to M is subsequently computed. The
robustness is checked against fine-tuning (additional epoch
of training without the embedding term up to 50% of the
total training) and magnitude pruning (remove the fraction
T ∈ [0.1; 0.99] of the smallest weights in terms of L1-norm).

While [6] inherits its key concept from [3], the mark is
now embedded in the activation function of the selected
layer. Four architectures are investigated: an MLP trained on
MNIST, a test CNN and a WideResNet trained on CIFAR10,
and ResNet50 trained on ImageNet. A binary watermark of
M bits is inserted, according to a secret key represented by
a random matrix A ∈ RNl×M . To embed the watermark, the
output of the watermarked layer is estimated by a Gaussian
mixture and two regularization terms are designed: the first
one selects the Gaussian laws to be watermarked, while
the second one, only activated for a subset of the training,
minimizes the distance between the projection of those laws
on the key and the watermark. Detection is performed by
adapting the concepts in [3]. Robustness is checked against
fine-tuning (up to 15% of the total training), magnitude prun-
ing (T ∈ [0.1; 0.99], and watermark overwriting (embedding,
with the same method, a new watermark).

The study in [7] randomly selects a set of parameters to
be watermarked from multiple layers. Three classification
models (ALL-CNN-C and ResNet32 trained on CIFAR10,
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and LeNet5-caffe trained on MNIST) are considered. The
watermark is represented by an image whose size depends
on the model size. A subset of the initial weights is replaced
by the pixels in the watermark, and their location is stored
to serve as a secret key. The watermark is inserted via a
regularization term making the inference highly sensitive
to the selected parameters (hence, keeping those parameters
unchanged during the training). Mark detection is achieved
by recovering the selected parameters and by computing
the Pearson’s correlation between the original and retrieved
watermarks. The robustness is checked against fine-tuning
(up to 15% of the total training) and quantization (reduce
the number of bits B ∈ [2; 16] representing the parameters).

II-C. Problem statement
The state-of-the-art analysis highlights two types of lim-

itations in the white-box watermarking landscape. First,
the robustness investigation preponderantly considers fine-
tuning, pruning, and quantization, all belonging to the class
of removal attacks. This originates the first question our
study deals with: “Do geometric attacks exist for NN
watermarking? If so, how can they be handled?”. Second,
the application scope is generally restricted to image classi-
fication [3], [6], [7]. Moreover, [3] and [7] are a priori prone
to be generalized to other application domains, while [6] is
intimately connected to the classification task, and its con-
ceptual generalization is not straightforward. So, the second
question our study deals with is: “Is NN watermarking
restricted to classification tasks, or can it be effectively
extended to other tasks? If so, is the robustness property
modified?”

III. GEOMETRIC ATTACKS TO NEURAL
NETWORK

This work investigates i) whether geometric attacks can
be defined for NN white-box watermarking, and ii) how can
they be counter-attacked.

III-A. White-box permutation attacks
By definition, geometric attacks try to desynchronize the

detector by altering the locations conveying the watermark.
NNs are exposed to geometric attacks because they have
many symmetrical, equi-loss representations that can be
generated by a random neuron permutation within a layer,
without affecting the neurons’ functions. A corresponding
permutation should also be applied to the input channel of
the next layer (further referred to as channel permutation).
Therefore, ensuring a posteriori resynchronization of neu-
rons within a layer is a challenge in itself [11]. The process
of permuting in-layer neurons can be accommodated by the
following equations:

wπl

l,c,− =
〈
Pπl

, (wl,c,−)
T
〉

∀c, (1)

wπl

l+1,−,n =
〈
Pπl

, (wl+1,−,n)
T
〉

∀n, (2)

with wl ∈ RNl−1×Nl being the weights for the l-th layer,
P (πl) the applied permutation, ⟨·⟩ inner product, and (·)T
the transpose operator. The equations above were derived for
a single fully-connected layer without biases; yet, they can
be extended to any other layer typology. This process can
also be applied to any pair of consecutive layers.

In order to establish whether state-of-the-art white box
methods are a priori robust against neuron permutation, they
should be confronted to Eq. (1) and/or Eq. (2), as follows.

In [3], the detection is done by projecting the weights
of the flattened watermarked layer on the secret key. Con-
sequently, the neuron permutation on the l-th layer has no
impact on detection. However, if the neuron permutation is
applied to the l−1-th layer, the resulting channel permutation
will completely desynchronize the watermark.

In [6], the detection is done by projecting the output of the
watermarked layer on the secret key. Consequently, a com-
plementary behavior with respect to [3] is encountered: the
neuron permutation completely destroys the synchronization
while the channel permutation preserves the synchronization.

In [7], the detection is done by using the secret key to
locate the watermarked weights; hence, both neuron and
channel permutations are likely to destroy the detection
synchronization.

The above analysis demonstrates that Eq. (1) and/or
Eq. (2) stand for effective geometric NN watermarking
attacks, as they jointly meet all the unauthorized user
expectancies: (1) they succeed in destroying the mark
detection, (2) they have no impact in the imperceptibility,
as they preserve the watermarked NN output, and (3)
they introduce no additional computational cost (in the
sense that they just relate to the NN model representation
and do not require any inference-related computation).
As a preliminary step towards ensuring robustness against
this new type of attack, the possibility of defining counter-
attack methods is investigated hereafter.

III-B. White-box permutation counter-attack

A posteriori resynchronization of neurons inside an NN
layer subjected to neuron permutation is, in its general form,
an exhaustive search problem in the space of factorial (over
the number of neurons in the permuted layer) dimension. Re-
gardless of the potential solution, the problem of recovering
the original order for permuted neurons becomes even more
complex for NN watermarking, when permuted neurons can
also be modified by other types of attacks. The preliminary
solution presented in [11] was not designed to be effective
when supplementary operations (e.g. fine-tuning) are applied
on the permuted neurons, while [9] targets the specification
of a generic counterattack against the permutation. The
advanced counterattack is based on creating a trigger set
that differentiates one neuron from another and thus resyn-
chronizes the model before retrieving the watermark. During
the experiments, the permutation attack is applied to the
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first or the second hidden layer of ResNet18 and ResNet50,
with 160 elements in the trigger dataset. The performance
of the counterattack is assessed by evaluating the BER (bit
error rate) between the inserted and the retrieved watermark.
The authors consider the counterattack successful for an
experimental configuration when the BER is lower than 0.4
making the capacity of the original method reduced to 1
bit, indicating whether the watermark is inserted or not.
The results show that the advanced counterattack has highly
sensitive chances of success, depending on the experimental
conditions. From a security point of view when using the
same configuration as in [9], the information to be protected
is the third layer of a ResNet-18, wl ∈ R64×128×3×3 that
has 73, 728 elements. According to [9], 160 Trigger inputs
of size 32× 32 (that is, 163, 840 elements) are created and
should be kept secret. Hence, [9] requires at least twice more
information to be kept secret than the information that is
protected.

Our proposed counterattack consists of computing the
cosine similarity between the un-attacked model, which is
already public, and the attacked model. Indeed, despite the
redundancy known to exist in NN models, we can expect
the cosine similarity SC(wl,i,wl,i) = 1, and hence, to have
the following equation:

SC(wl,i,wl,i) > SC(wl,i,wl,j) ∀j ̸= i. (3)

The original positions can be recovered by building the
permutation matrix Pπl

:

(Pπl
)i,j =

{
1 j = argmaxk [SC(wl,w

πl

l )]
0 otherwise. (4)

with wπl

l being a permuted version of the original weights.
To conclude with, Eq. (3) and Eq. (4) ensure effective
reversion of the permutations described by Eq. (1) and
Eq. (2), and they can serve as a theoretical counter-attack
in NN watermarking. Yet, there is no a priori ground
about their behavior when several types of attacks are
combined (e.g. permutation and fine-tuning), and an in-
depth, complementary experimental study is required.

IV. EXPERIMENTAL STUDY
This section presents a global yet detailed investiga-

tion of the robustness property. Section IV-A presents the
experimental testbed, Section IV-B the results related to
the robustness property in absence of any counter-attack,
while Section IV-C illustrates the relevance of the geometric
counter-attack.

IV-A. Experimental testbed
Watermarking methods and tasks. Three state-of-the-

art methods are considered [3], [6], [7]. As explained in
Section II, [3], [7] can be extended from classification
towards image segmentation and video compression tasks,
and they will be studied accordingly. In each case, the

data payload and the imperceptibility are kept from their
references. For each task, the imperceptibility criterion is
provided by validation metrics considered during their train-
ing (cf. paragraph here-after). For [3] and [6], the watermark
is inserted in one of the biggest convolutional layers and
the penultimate layer, respectively; for [7] the watermarked
weights are randomly selected through the whole model,
respectively.
Watermarked architectures and training datasets. Ac-
cording to the three tasks, the watermarking methods are
applied to four NN architectures trained on three datasets,
namely: (1) VGG-16 and ResNet34 trained on CIFAR-
10 for image classification, (2) DeepLabV3 [1] trained
CityScapes [12] for image segmentation, and (3) DVC [2]
trained on Vimeo-90k [13] and tested on UVG-dataset [14]
for video compression. For the three tasks, the corresponding
validation metrics are: (1) top-1 classification error, (2) the
complementary mean Intersection over Unions (mIoU), and
(3) the mean rate distortion vs. image quality, expressed in bit
per pixel for a prescribed Multi-Scale Structural Similarity
(bpp/MS-SSIM).
Attack parameters. First, four removal attacks are con-
sidered: Gaussian noise addition (N (0, σl · Ω), with Ω ∈
[0.01; 0.6], where σl is the standard deviation of the l-
th layer), pruning (remove the T ∈ [0.1 : 0.99] fraction
of the smallest weights in terms of L1-norm), fine-tuning
(resume the training for up to 5% of the original number
of iterations), and quantization (reduce the number of bits
B ∈ [2; 16] used to represents the parameters). These attacks
have been applied to the watermarked layers for [3] and [6];
this corresponds to the worst possible case for the authorized
user, in the sense that, for a given imperceptibility value,
they would provide the most harmful effects. In the case
of [7], the attacks are applied over all the layers (as the mark
is spread over an arbitrary, unknown, number of layers).
In this case, in order to keep a fair comparison with [3]
and [6], we target to keep constant the total amount of attacks
induced in the watermarked NN, by adjusting the attack
parameters accordingly, as detailed in Section IV-B. Second,
the geometric attack and its counter-attack are applied to
each and every layer in the NN.

IV-B. White-box robustness against attacks

The experimental results consider all the working config-
urations mentioned above and are illustrated in Table I.
In Table I, rows are first grouped according to the type of
watermarked architecture (VGG16, ResNet34, DeepLabV3,
DVC). Next, for each architecture, the rows are labeled
according to the watermarking method. Columns are of
three types, and provide information about the NN model
in absence of any watermarking operation, on the water-
marked NN in absence of any attack, and on the attacked
watermarked NN. The first column is of the first type and
presents the baseline performance of the NN model. The
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Table I: Robustness evaluation for the different methods and architectures. For each combination, the parameter gives the
value for an attack, imperceptibility is the performance on the validation set, and robustness corresponds to the watermarking
metrics (C-BER and Pearson correlation coefficient) multiplied by 100. Blue box enlights a successful attack.

Baseline
Perf. Perf. Rob. Param. Perf. Rob. Param. Perf. Rob. Param. Perf. Rob. Param. Perf. Rob. Perf. Rob.

[3] 11.86 100 0.6 31.4 100 0.99 25.15 100 5 11.79 100 2 90 100 11.86 49
[6] 11.19 100 0.6 25.9 100 0.99 18.54 100 5 11.9 100 2 89.99 50 11.19 62.5
[7] 12.49 99.99 0.06 24.6 73.97 0.9 77.22 99.99 5 8.81 99.99 2 80.77 99.99 12.49 22.48
[3] 10.14 100 0.6 14.24 100 0.99 10.14 100 5 8.27 100 2 89.68 100 10.14 55
[6] 8.72 100 0.6 19.35 100 0.99 23.38 100 5 8.21 100 2 90 37.5 8.72 68.75
[7] 11.14 99.99 0.06 30.44 80.23 0.9 90 99.99 5 11.02 99.99 2 91.99 98.99 11.14 11.04
[3] 36.23 100 0.6 42.51 100 0.99 94.72 100 5 36.46 100 2 97.99 62.5 36.23 68.75
[7] 30.14 99.99 0.06 42.54 99.35 0.9 99.99 99.99 5 29.99 99.91 2 99.86 98.99 30.14 46.39
[3] 0.24/0.97 100 0.6 0.25/0.97 100 0.99 0.24/0.97 100 5 0.23/0.97 100 2 13.62/0.11 87.5 0.24/0.97 37.5
[7] 0.23/0.97 99.99 0.06 5.81/0.21 62.56 0.9 0.50/0.63 99.99 5 0.23/0.97 93.62 2 13.62/0.31 99.99 0.23/0.97 49.57

1.647555 13.29 -0.07 6.588533
1.314567 7.35 0.71 7.042002
0.969576 64.73 -3.68 5.466773
0.404339 0 -1.87 7.844181
1.219037 14.66 -0.51 9.321101
1.732496 78.86 -0.12 7.25763
0.173337 58.49 0.23 1.704665
0.411413 69.85 -0.15 2.313205

DVC 
(compression)

0.23/0.97

VGG16 
(classification)

11.01

ResNet34 
(classification)

9.76

DeepLabV3 
(segmentation)

33.1

Watermarked and attacked
Watermarked Gaussian Pruning Fine tuning Quantization Permutation

next two columns are of the second type and provide the
performance of the NN (according to the corresponding
validation metric, IV-A) and the Robustness. The differences
between the inserted and the recovered watermarks are
expressed as complementary BER, denoted by C-BER and
computed as (C−BER = (1−BER)×100) for [3], [6] and
as Pearson coefficient (multiplied by 100) for [7]. The other
columns are of the third type and are sub-grouped according
to each investigated attack. In addition to performance and
robustness, the “attacks parameter” is provided, except for
the permutation attack where it is irrelevant. For each
combination, Table I provides the parameter value for which
the watermark can no longer be retrieved or, if the watermark
fully withstands the set of values presented in Section IV-A,
the value corresponding to the strongest attack. Note that
information about the imperceptibility can be obtained by
comparing the values of performance between the water-
marked and baseline columns; similarly, information about
the impact of the attacks in imperceptibility can be obtained
by comparing the values of performance between the attack
and watermarked columns.

Several conclusions can be drawn from Table I.

First, by comparing the Watermarked and Baseline
columns, it is shown that, at least in absence of attacks,
the application field of NN watermarking can be extended
from classification to segmentation and compression. This
conclusion is based on the fact that the three tasks result in
quite an equal impact on performance. For classification, the
relative differences in performance can be computed from
the values presented in Table I; they range between −0.1
and 0.14, with an average of 0.05. Such values become
−0.1, 0.1 and 0 for segmentation. In the case of video
compression, while the MS-SSIM is constant, the relative
variations in bpp become 0, 0.04, and 0.02. Note that actually
the regularisation term included in [6], [7] for watermarking
purposes also has a beneficial impact on the NN performance
that can be increased with respect to the baseline. In each and
every case, the watermark can be recovered (C-BER = 100%
and Person’s coefficient = 0.99). This opens the door to
studies devoted to specific NN watermarking methods for
segmentation and coding tasks.

Secondly, for each investigated NN and watermarking
method, the robustness against the removal attacks is met, as
either the watermark can be retrieved or the performance is
lowered beyond the application purpose. In this respect, for
any of the three tasks, the Gaussian, pruning, and fine-tuning
attacks do not have any impact on the watermark detection,
as demonstrated by values C-BER = 100% and Person’s
coefficient > 0.6. When considering the quantization attack,
the watermark can be lost (C-BER ≤ 90%) but the perfor-
mance decreased beyond the application requirements; just
for illustration, in the case, [6] and VGG16 architecture, C-
BER = 50 but the top-1 error becomes = 89.99. Similar
behavior is encountered for [6] on ResNet34 and [3] on
DVC.

In contrast to removal attacks, the geometric attack is
always successful: for the same performance as the water-
marked model, the mark cannot be anymore detected (C-
BER ≥ 70% and Person’s coefficient ≤ 0.5). Hence, the
effectiveness of the geometric attack defined by Eq. (1) and
Eq. (2) is demonstrated, and the need for evaluating the
counter-attack defined by Eq. (3) and Eq. (4) is proved.

IV-C. Geometric counter-attack performance
The counter-attack to geometric modifications is applied

to each of the working configurations investigated in the
previous sub-section. The results are synoptically displayed
in Fig. 2 for [3], [6] and in Fig. 3 for [7].
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Fig. 2: Robustness evaluation of geometric counter-attack
against the different removal attacks for methods [3], [6].
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Each of these two figures is structured in five areas.
The first area corresponds to the case when no removal
attack is applied on the watermarked NN. The other 4 areas
correspond to the cases when the four removal attacks are
individually applied (from left to right: Gaussian noise addi-
tion, pruning, fine-tuning, and quantization, respectively). In
its turn, each of these 5 areas shows three bars corresponding
to the cases of: no additional geometric attack - labeled by
(unpermuted), an additional geometric attack - labeled by
(permuted), and an additional geometric attack followed by
its counter-attack - labeled by (permuted+CA).

While the abscissas are identical for these two figures,
their ordinates are different. Figure 2 provides average C-
BER values (multiplied by 100) and their related ± standard
deviation intervals (bounded at the maximum theoretical
value of 100). The averages are computed over all the NN
architectures, all the investigated attack parameters, and the
methods in [3], [6]; the standard deviation is computed as
an unbiased estimator over the same data. In Fig. 3, the
coordinate corresponds to the Person’s coefficient (multiplied
by 100) and also presents average and ± standard deviation
intervals (bounded at the maximum value of 100); this time,
the average is computed only for [7], over all the NN
architectures and all the investigated attack parameters; the
standard deviation is also computed as an unbiased estimator
Fig. 2 and Fig. 3 demonstrate that Eq. (3) and Eq. (4)
are effective geometric counter-attacks: they can synchronize
back the mark detection even when the geometric attack is
applied in conjunction with any of the 4 investigated removal
attacks.
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Fig. 3: Robustness evaluation of geometric counter-attack
against the different removal attacks for method [7].

V. CONCLUSION
The present paper presents an in-depth investigation of

NN watermarking robustness. First, it shows that the neuron
and channel permutation operations can be transposed into
an effective, new type of attack (the first in the geometric
attacks family), and provides the matched counter-attack.
Secondly, it demonstrates that the counter-attack is effective
in ensuring robustness when the geometric attack is applied

by itself or in conjunction with any of the four state-of-
the-art removal attacks (Gaussian noise addition, pruning,
fine-tuning, and quantization). As a side result, the study
establishes that the NN watermarking scope can be extended
from classification tasks to segmentation and compression,
and identifies the performance gap to be bridged by future
methods. Finally, the level of detail of the quantitative results
presented in the study can provide guiding information
for an experimenter who would like to get to a practical
NN watermarking solution. Future work will be devoted
to investigating the coupling of several types of removal
attacks as well as to identifying the potential synergies and
anatomies when coupling removal, geometric and cryptogra-
phy attacks. Extending the principle from this study to devise
a generic regularisation term that can be dynamically used
as a counter-attack is also part of future work.
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Abstract—Rural communities in Australia have limited access
to Ear, Nose and Throat (ENT) specialists, resulting in a lack
of expertise to provide a diagnosis of complex and chronic
ear diseases. This literature review examines previous attempts
at creating a computer-aided tool to accurately diagnose ear
disease and gaps in the literature. A systematic search was
conducted to identify relevant papers and the latest best trends
in technology. Four papers showed significant results in ear
disease detection with deep learning models providing the best
performance. Some studies using larger datasets consisting of
endoscopic images obtained accuracies of over 90%. No adequate
model was found that used otoscopic images with a sensitivity
of over 90%. Endoscopic images provide better quality images,
making it unclear how the models would perform on otoscopic
images. Advanced techniques such as Transformers have not yet
been tested in ear disease detection and could help improve model
accuracy.

Index Terms—Convolutional Neural Network, Deep Learning,
Image Classification, Otology, Transformers

I. INTRODUCTION

A. Background

A lack of Ear, Nose, and Throat (ENT) specialists, par-
ticularly in rural and remote regions of Australia, results in
a shortage of specialist-led diagnoses of ear diseases, and
in particular, otitis media. Ear diseases are most prevalent
amongst children, with approximately five out of six children
having an ear infection by the age of three [1]. With such a
high prevalence rate, especially amongst Aboriginal and Torres
Strait Island populations (ATSI), the ability to accurately diag-
nose ear conditions is crucial to ensure prompt and appropriate
treatment is provided.

Whilst obtaining an accurate diagnosis and initiating
treatment according to well-established protocols and

guidelines seem straightforward, diseases can be misdiagnosed
up to 50% of the time using an otoscope [2]. A study
conducted in 2001 [3] evaluated the accuracy of pediatricians
and Otolaryngologists (ENTs) in diagnosing ear diseases when
using a 30-second video taken from an otoscope. Participants
were asked to distinguish between one of four possible
conditions: Acute Otitis Media (AOM), Otitis Media with
Effusion (OME), retracted but otherwise normal tympanic
membranes, and normal ears. A total of 514 pediatricians and
188 ENTs were tested on nine different cases, with the results
shown in table I. The participants’ experience in their field
was assessed. While there was on average over 90% accuracy
for both types of practitioners for detecting abnormalities, the
accuracy for correctly diagnosing the individual disease was
much lower. Pediatricians on average made a correct diagnosis
only 50% of the time, while the ENTs on average made a
correct diagnosis 73% of the time. The videos shown to the
participants were taken after the ear canals of the patients’
had been completely cleared of any wax, and coupled with
the long length of viewing time (30 seconds) suggests that in
real-life clinical scenarios, accuracies would be even lower
than seen in this experiment [3]. Furthermore, this study
used videos rather than still otoscopic images, which should
have helped as getting a single clear image recorded of the
eardrum can be difficult. Some conditions are known to be
particularly difficult to identify, such as otitis media with
effusion [4], and including these often challenging conditions
can reduce the overall diagnostic accuracy reported by a study.
This study highlights that diagnosing ear diseases accurately
can be a challenging task, even for an experienced practitioner.

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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Video
Examination
No.

Correct Diagnosis Pediatricians
(n = 524)

ENTs
(n = 188)

1 OME 48 88
2 OME 45 69
3 Retracted TM, otherwise normal 56 76
4 AOM 73 76
5 OME 50 79
6 OME 25 48
7 Retracted TM, otherwise normal 46 83
8 OME 48 84
9 Retracted TM, otherwise normal 59 65

Overall 50 73

TABLE I
THE RESULTS OF THE STUDY ASSESSING PEDIATRICIANS AND ENTS. [3]

B. Problem statement and specifications

The primary challenge encountered in the diagnosis of ear
disease is that the interpretation of the tympanic membrane
appearance, especially by novice or less experienced health-
care practitioners, is often fraught with difficulty and may be
inaccurate. Additionally, there is a shortage of more advanced
tools such as otoendoscopes, which can provide a wider field
image with increased brightness and clarity, as they are not
commonly available in primary health care and often require
specialised training to operate. Whilst otoscopy is commonly
performed by most health care practitioners, there is a potential
gap in accurately interpreting images. The common metrics
used to measure the performance of a particular diagnosis
are its sensitivity and specificity. Sensitivity refers to the
proportion of patients with the disease that are correctly
identified as having that disease, while specificity corresponds
to the proportion of patients without any disease that are
correctly identified as not having a disease. As the diagnosis
of ear diseases requires the correct classification of the image
into one of several multiple possible causes, sensitivity refers
to the proportion of patients with a particular disease that
were correctly identified as having that particular disease,
and specificity is essentially equivalent to the sensitivity of
detecting a patient without any disease, i.e., the proportion of
patients with a normal eardrum.

An ideal diagnostic ‘test’ should have both high sensitivity
and high specificity and a test is considered to have good
diagnostic accuracy when both are around 90%. The ‘test’,
or in this case, a diagnostic classification model must also be
capable of classifying more challenging cases such as OME to
a similarly high level. As a result, it is important to ensure that
the sensitivity for each disease is equally high, rather than the
average for all diseases. The overall accuracy, i.e. proportion
of correctly classified instances, can also be a useful measure.
However, in situations where there is a large proportion of
normal ear drums, there is a potential for bias which can lead
to a high overall accuracy overall but with a low sensitivity
for some diseases. A predictive model with low sensitivity to
abnormal eardrums can lead to incorrect treatment, delayed
treatment and increased treatment costs, which can have long-
term sequelae [5].

II. METHODOLOGY

A. Search and selection criteria

A literature search was conducted using Google Scholar
with keywords including ‘ear disease detection’, ‘deep learn-
ing’, ‘machine learning’ and ‘otoscopic images’. The aim was
to identify papers that utlised computer-aided technology to
diagnose ear diseases from otoscopic images of the eardrum,
captured through otoscopic tools. The scope of computer-aided
technology included traditional computer vision techniques,
deep learning and machine learning.

Twenty papers closely related to this topic were initially
obtained through the search. The papers’ ranged from 2016 to
2022, indicating the research in this field is relatively new and
still has room for exploration. Each paper was evaluated based
on its publication date, the dataset used, methodology and
overall results. Four papers were chosen for further analysis.
A 2016 paper by Myburgh et al. [6] was selected for its status
as the earliest study to use computer-aided technology for ear
disease detection as well as its use of traditional computer
vision techniques in conjunction with machine learning. The
remaining papers employed deep learning techniques using
CNN (Convolutional Neural Network) models. The paper by
Cha et al. [7] used a large dataset and obtained a high
level of accuracy. The paper by Zeng et al. [8] was an
improvement over previous studies in terms of dataset size
and the final accuracy. The final paper, by Habib et al. [9]
was the most recent study (2022) and was also an Australian-
based study. The dataset used was obtained from remote areas
of Australia and was a more representative dataset than the
previous studies.

III. RESULTS

A. Analysis of papers

The study conducted by Myburgh et al. [6] in 2016 was
among the very first to use machine learning for ear disease
diagnosis. They aimed to develop computer-aided technologies
that could diagnose ear diseases in developing countries, where
access to medical doctors and health personnel is limited.
They collected 391 images for training representing 5 different
classes of diseases: cerumen, normal Tympanic Membrane
(TM), AOM, OME and Chronic Suppurative Otitis Media
(CSOM), see Figure 1. The images had a resolution of at
least 500×500. With this limited training set, they achieved
an average accuracy of 80.6% using a traditional machine
learning technique, i.e., decision trees. To extract the feature
list, they applied numerous computer vision operations such
as edge detection and colour detection to identify specific
features in the image. They achieved a sensitivity ranging
from 79% to 82% for each class. However, this study has
two limitations: (i) it used a small dataset, which may not
adequately represent real-life data; (ii) the chosen model was
a decision tree, which is fixed and would need to be redesigned
if more data becomes available. Despite these limitations, the
study demonstrated that even with a small training dataset,
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relatively good accuracy can be achieved through traditional
machine learning and computer vision approaches.

Fig. 1. The five classifications of ear diseases respectively - Cerumen, Normal,
AOM, OME, CSOM. Myburgh et al. [6]

In 2019, Cha et al. [7] conducted a study to address a
similar problem, but using a large dataset. They collected
10,544 images, of which 80% (8435) were used for training
and the remaining for testing. The resolution of the images was
640×480 pixels. This dataset was collected over four years
using otoendoscopic images and it represented a significant
improvement in terms of the data size compared to previous
studies, such as the one by Myburgh et al. [6]. As a result, they
were able to achieve a high average accuracy of 93.73% using
an ensemble deep learning model - a combined model of two
publicly available pre-trained models, i.e., InceptionV3 and
ResNet101. To implement the method, they followed a series
of steps, including data processing, training individual models
and finally combining the best two models to create their final
ensemble model. The data processing consisted of labelling
the images into relevant categories. From the 10,544 images,
they separated the images into six different classes: normal,
tumour, OME, myringitis, TM perforation and attic retraction.
The classes did not necessarily represent one specific disease,
rather they combined similar diseases under one umbrella class
since some ear diseases only had a few samples. The grouping
of similar ear diseases was based on the similarity in diagnosis
and treatment. Sample images of the classes are shown in
Figure 2.

Fig. 2. The six classifications of ear diseases. Cha et al. [7]

The dataset was then augmented by applying random ro-
tations, translations, scaling and flipping. To obtain the final
models, they first selected nine pre-trained CNN models and
evaluated each model individually on the validation set to
obtain the accuracy and calculation time, as shown in Table II.

Subsequently, the two best-performing models were then com-
bined to create an ensemble model. Ensemble models can
often combine weaker models to create a more powerful and
accurate model. The models this paper proposed to combine
were InceptionV3 and ResNet-101. The final accuracy on
the entire training set of 8435 images, was 93.73%. This
is a relatively high accuracy and can partly be attributed
to the large size of the training dataset and the large bias
towards normal images, which represented approximately 41%
of the dataset. The study also tried different data sizes to test
the effects of changing the size of the training data. They
conducted three tests using different numbers of randomly
sampled training images, i.e., 2k, 5k images, and the full
training set of 8435 images, respectively. These tests were
performed using each of the nine individual models. The
models using 2k training images obtained accuracies ranging
from 68.2% to 84.1%, while the models using 5k images
resulted in accuracies ranging from 82.8% to 89.5%. Using
the full training set resulted in accuracies ranging from 85.6%
to 92.1%. Other performance metrics, except training time,
were not considered. The results are displayed in Table II.
This demonstrates that having a larger dataset can increase
the accuracy by a significant margin. It also shows that the
final ensemble model had greater accuracy than any individual
model alone. The positive outcomes of their research were
the high accuracy achieved, and also the large dataset that
was collected. However, the limitation of this work is that
as the model was trained on otoendoscopic images, it may
not perform well on standard otoscopic images. Although
this dataset is large, it is not an accurate representation of
the real-world scenario for rural regions. Another limitation
was the sensitivity across all classes was not necessarily high.
The sensitivity metric was computed for the final two models
and the ensemble classifier. While the ensemble classifier
still reported a higher sensitivity than either base model for
most classes, the lowest sensitivity recorded for the ensemble
classifier was 77.9% for the myringitis class. This is much
lower than the target value of 90%. Most other classes also
reported sensitivity values lower than 90%.

Transferred models Accuracy Full Full- H25 Quarter Half GPU time (seconds) Parameters (millions) Number of layers

SqueezeNet 85.55 85.5 73.5 82.8 4137 1.24 68
Alexnet 87.2 83.6 73.7 82.6 3805 61 25
ResNet18 90.65 90.2 83.4 86 4256 11.7 72
MobileNet-v2 90.75 89.8 79.9 84.9 7032 3.5 155
GoogLeNet 90.9 88.7 68.2 85.5 5104 7 144
Resnet50 91.2 91.4 81.3 86.3 7302 25.6 177
Resnet101 91.55 91.7 83.6 86.1 12,215 44.6 347
Inception-v3 92 92.1 84.1 89.5 11,938 23.9 316
InceptionResnet- 92.1 91.9 82.2 86.9 33,283 55.9 825

TABLE II
THE RESULTS AFTER TRAINING NINE CNN MODELS ON DIFFERENT SIZED

DATASETS. CHA et al. [7]

The next relatively large study was conducted in 2021 by
Zeng et al. [8], building upon the previous work in [7] by
using even more data and testing out some different pre-trained
CNN models. They collected 20,542 otoendoscopic images
over three years and classified the ear diseases into 8 different
classes including normal, cholesteatoma, CSOM, External
Auditory Canal (EAC) bleeding, cerumen, Otitis Externa (OE),
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OME and Tympanosclerosis. The resolution of these images
was 448×448 pixels. Samples of the images are shown in
Figure 3.

Fig. 3. The 8 classifications of ear diseases respectively - Cholesteatoma,
CSOM, EAC Bleeding, Cerumen, Normal, OE, OME, Tympanosclerosis.
Zeng et al. [8]

They used an 80:20 training/testing split on the overall
dataset and achieved an average accuracy of 95.59% using
an ensemble model consisting of two models, i.e., DenseNet-
BC161 and DenseNet-BC1615. This method is similar to
the one used in the previous study [7]. Initially, they tested
the dataset against nine individual deep learning models and
ranked them based on their accuracy and efficiency, which was
measured by their training time, as shown in Table III. From
this, they selected the top two models and combined them to
create an ensemble model to make a more powerful model.
In addition to developing the model, they also built a real-
time deep learning system to be used in the clinical workplace.
Although they were not able to test their system in a clinical
environment with real patients at the time of publication, they
claim that the system works in almost real-time on the testing
data. The positive aspects of this study were the high accuracy
and sensitivity that they were able to achieve and the system
they built. Unlike the previous study, the sensitivity values for
this study ranged from 90.82% to 100%. However, as with
the past study, these results are highly attributed to the dataset
and quality of images used. The dataset they were able to
obtain was almost double that of the aforementioned study
and is far greater than any other study conducted to date. The
images obtained were taken via otoendoscopes and so while
this study had impressive results, it is not conclusive how this
model would perform in a rural environment. However, it does
demonstrate that with a large enough dataset, high accuracy
and sensitivity are achievable.

The study by Habib et al. [9] conducted in 2022 is the most
recent study on the topic of the detection of ear diseases. This
study was conducted in Australia using a dataset collected
from “Aboriginal and Torres Strait Islander children who
underwent tele-otology ear health screening in the Northern
Territory, Australia, between 2010 and 2018” [9]. Although
the data was collected only for children, this dataset is rep-
resentative of the real-world scenario as it was both taken
by an otoscope and from a rural region. A total of 6527
otoscopic images were used to train and test the model. More
specifically, 5297 images were used for training and 600 were
used for testing; approximately a 91:9 split between training

Transferred models Accuracy GPU time (s) Parameters Processing time (s)??

MoblieNet-V2 93.455 27,240 2,235,200 0.0374
MoblieNet-V3 93.884 24,758 2,946,622 0.0357
Inception-V4 93 98,270 42,681,353 0.1309
ResNet50 93.581 51,098 25,557,032 0.0668
ResNet101 93.632 78,844 42,516,552 0.1099
Inception-ResNet-V2 94.617 111,849 54,318,760 0.1604
DensNet-BC121 94.188 54,192 6,962,056 0.0859
DensNet-BC161 94.564 78,453 26,489,672 0.1707
DensNet-BC169 94.541 56,477 12,497,800 0.109
DensenetBC1215 94.364 56,079 7,548,920 0.0809
DensenetBC1615 95.099 80,895 27,893,456 0.4512
DensenetBC1695 94.339 58,209 13,122,040 0.1318

Ensemble 0.5708

TABLE III
THE RESULTS OF TRAINING THE INDIVIDUAL MODELS ON THE TRAINING

SET. ZENG et al. [8]

and testing. The resolution of these images was not reported.
The dataset was classified into five classes that included
Normal, OME, AOM, CSOM and cerumen. Sample images
are shown in Figure 4.

Fig. 4. The five classifications of ear diseases respectively - Normal, Cerumen,
AOM, OME, CSOM. Habib et al. [9]

Their model was created by using the Custom Vision API
provided by Microsoft Azure Custom Vision, and used CNN
models with a ResNet backbone to create a deep learning
model using transfer learning - which used pre-trained weights
from ImageNet. When using all images and classes for their
classification, they achieved a test accuracy of 74.5%. Several
other tests were also conducted by removing one or more
classes of ear disease from the dataset and using the rest of
the data for training and testing. When not using images of the
“OME” class, the accuracy was 92.8%. This brings an increase
of about 17%, indicating that the model had trouble classifying
the OME class. OME is also an example of a disease that
ENTs have more trouble with. These results are displayed in
Table IV.

Model Categories Classes Total
Images (n)

Training
Images (n)

Test
Images (n)

Test
Accuracy (%) AUC

1 Normal, OME, AOM, COM, Wax/obstructed EAC 5 6527 5927 600 74.5 0.963 (95%CI: 0.941-0.986)
2 Normal, AOM, COM, Wax/obstructed EAC 4 5125 4675 450 92.8 0.997 (95%CI: 0.994-1.000)
3 Normal, OME, AOM, COM 4 6195 5625 570 74.4 0.972 (95%CI: 0.965-0.989)

TABLE IV
THE RESULTS OF PERFORMING MULTICLASS CLASSIFICATION. HABIB et

al. [9]

The difficulty of detecting OME accurately was also demon-
strated by a series of binary classification (i.e., normal v.s.
abnormal) tests. Each class of ear disease underwent binary
testing against normal images to evaluate the accuracy and
sensitivity of differentiating between normal and one specific
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disease. As a result, AOM, CSOM and cerumen had a test
accuracy ranging from 96.3% to 99.3% and test sensitivity
ranging from 90.7% to 100%. In contrast, OME only had an
accuracy of 77.8% and a sensitivity of 59.3%. This indicates
that even in the case of binary classification, their model did
not perform well in detecting OME. This is despite having a
large amount of data for the OME class, i.e., 21.4% (1402)
of the total images in the original dataset, which is four
times greater than the number of EAC images and seven
times greater than AOM classes. These results are displayed
in Table V.

Category Total
Images (n)

Training
Images (n)

Test
Images (n)

Test
Accuracy (%)

Test
Sensitivity (%)

Test
Specificity (%)

Test
PPV (%)

Test
NPV (%)

Wax/Obstructed EAC versus normal 3434 W/O-302
N-2852

W/O-30
N-250 98.2 100 98 85.7 100

AOM versus normal 3294 AOM-172
N-2852

AOM-20
N-250 99.3 100 99.2 90.9 100

COM versus normal 4601 COM-1349
N-2852

COM-150
N-250 96.3 90.7 99.6 99.3 94.7

OME versus normal 4504 OME-1252
N-2852

OME-150
N-250 77.8 59.3 88.8 76.1 78.5

TABLE V
THE RESULTS OF PERFORMING BINARY CLASSIFICATION. HABIB et al. [9]

This study demonstrates that, while utilising a dataset
collected from a rural area - which aligns with the realistic
scenario for rural settings - the model struggled to detect OME
(a condition that occurs to a high degree in rural and remote
patients) with a high level of sensitivity. Additionally, the study
was limited by the small number of classes of images included
in the dataset. The dataset included only five classes, while
other diseases such as OE or tympanosclerosis were not taken
into account.

IV. DISCUSSION

A. Current state-of-the-art technologies for image classifica-
tion

The latest research on image classification has shown that
deep learning is the future of this field. Although previous
ear disease detection studies [7]–[9] have used deep learning
models, new and more powerful models have emerged since
then. Transfer learning is a common and efficient way to use
these models in medical applications. Due to privacy and
ethical concerns, there is a lack of readily available data,
which means pre-trained models are needed to ensure accurate
results. Creating a model from scratch will not yield the
desired level of accuracy when used in real-world settings, as
the model weights would not have been tuned to a sufficient
degree. Transfer learning uses pre-trained models that have
already had their weights and biases turned for accuracy, and
alters the last few layers to fit the output requirements.
The traditional practice for deep learning in image classifica-
tion is to use CNN models, however, a paper in 2017 [10] in-
troduced the idea of using a self-attention architecture, known
as transformers. CNNs extract features from an image, but
do not take into account the correlation between the features.
The self-attention architecture (transformer), is designed to
improve upon the traditional CNN model by considering the
relationships between features within an image, rather than
solely extracting features individually. This allows for a more
comprehensive understanding of the image as a whole. These

architectures have been shown promise in the area of computer
vision and image classification and have been shown to per-
form better than CNN models. The self-attention architecture
also opens up a pathway to image captioning which includes
providing a textual description of an image rather than just
producing a simple classification. The state-of-the-art models
as listed on Papers With Code [11], are typically transformers,
or a combination of transformer and CNN models, and have
a top-1 accuracy of over 90% when trained on large image
datasets such as ImageNet. For comparison, InceptionV3, a
model used by the 2019 study by Cha et al. [7] has a top-1
accuracy of 78.95% while a transformer type architecture such
as ViT-G/14 has shown an accuracy of 90.45% on ImageNet.
The significant increase in accuracy compared to traditional
CNN models highlights the power of these architectures.

B. Deep learning in medicine

Deep learning has overtaken traditional computer vision
techniques in the field of medicine rapidly in recent years. A
study in 2020 [12] reviewed the use deep learning in various
aspects of medicine including target detection, segmentation,
classification and registration. The review found CNN based
deep learning techniques to be a successful in not only finding
lesions, but also in discriminating and classifying specific le-
sions, and at times segmenting the lesion area. The application
of deep learning was also seen across various medical fields to
be successful. The major shortcoming of this technique found
was that training a model requires a large dataset which makes
the dataset acquisition more demanding.

A study in 2022 [13] reviewed the use transformers in
medical imaging and found that transformers had pervaded
almost all areas of medical imaging, with segmentation and
classification impacted most significantly. Though transform-
ers have only recently been applied in medical imaging, they
have already been shown to produce comparable results to
state-of-the-art CNN models in areas of segmentation and
classification. The rapid growth of transformers have prompted
further research in the area and “despite their impressive per-
formance, it is anticipated that there is still much exploration
to be done with transformers in medical imaging” [13].

C. Publicly available datasets for ear diseases

Despite the lack of publicly accessible datasets due to
privacy and ethical concerns, there are still three open-source
datasets that can be utilised for training a machine learning
model.
In 2019, Başaran et al. [14] created their own dataset for
the purpose of diagnosing ear diseases through the use of a
grey-level co-occurrence matrix technique and artificial neural
networks. They created two datasets in total, with the first
one consisting of 282 otoscopic images with seven classes;
Normal, AOM, CSOM, Cerumen, Tympanosclerosis, OE and
Tube. The second dataset created later [14] had 956 images and
included two additional classes; Foreign object and Pseudo-
membrane. All the images had a resolution of 500×500 pixels,
and samples of these images are displayed in Figure 5.
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Fig. 5. The nine classes respectively; Normal, AOM, Cerumen, OE, Tube,
Tympanosclerosis, Foreign object, Pseudo-membrane and CSOM. Başaran et
al. [14]

In 2020, Viscaino et al. [15] conducted a study to test the di-
agnosis of ear disease using computer-aided technologies and
made their dataset publicly available. The dataset consists of
880 otoscopic images taken from patients aged between 7 to 65
and includes four classes; normal, cerumen, tympanosclerosis
and CSOM. The dataset is well balanced with 220 images for
each class and each image has a resolution of 420×380 pixels.
Samples of these images are displayed in Figure 6.

Fig. 6. The four classifications of ear diseases respectively; Normal, Cerumen,
CSOM and Tympanosclerosis. Viscaino et al. [15]

The study by Camalan et al. [16] in 2020 aimed to use deep
learning for ear disease detection, and they made their dataset
publicly available for others to use. The dataset consists of
454 images from three classes; normal, OME and tube. These
images were taken using an otoscope and have an approximate
resolution of 900×900 pixels. However, the images have
been cropped to different sizes, resulting in some having
slightly lower resolution, while others have a higher resolution.
Samples of these images are displayed in Figure 7.

Fig. 7. The three classifications of ear diseases respectively; Normal, OME
and Tube. Camalan et al. [16]

There have been some other studies that, while not making
their datasets publicly available, have stated that they are able
to share their datasets upon suitable request to the authors and

the corresponding university. These datasets are listed in table
VI.

Source Dataset Size Type Resolution No. of Classes Data Sharing

Başaran et al. [14] 1238 Otoscopic 640×480 9 Public
Viscaino et al. [15] 880 Otoscopic 420×380 4 Public
Camalan et al. [16] 454 Otoscopic ∼900×900 3 Public
Cha et al. [7] 10544 Otoendoscopic 500×500 6 Requires Permission
Mothershaw et al. [17] 8486 Otoscopic 299×299 10 Requires Permission

TABLE VI
PUBLICLY ACCESSIBLE DATASETS

V. CONCLUSION

A. Research gap

While previous research has been conducted in the area
of ear disease detection, there is still a need for a complete
solution to accurately diagnose otoscopic images with high
sensitivity for a range of different ear diseases. It is uncertain
how well the model developed in the study by Zeng et
al. [8] would perform when applied to non-endoscopic images,
despite achieving a high sensitivity (>90%) for all classes
when using otoendoscopic images. Otoendoscopic images do
not provide a complete representation of the image quality that
can be obtained by non-specialists. Studies using otoscopic
images, such as Habib et al. [9] have reported lower sensitiv-
ity values, suggesting a significant difference in the results
obtained from otoendoscopic and otoscopic images. Habib
et al. [9] used a more representative dataset obtained from
rural communities using otoscopes, but were unable to achieve
sufficient sensitivity levels in diagnosing certain diseases such
as OME which only had a sensitivity of 59.3% in a binary
classification between OME and normal images.

B. Contribution and future work

The benefits of this technology extend beyond patients and
hearing health professionals and in particular rural communi-
ties which have limited access to ENT specialists. By utilising
telehealth in conjunction with this technology, patients can be
protected from receiving unnecessary or incorrect treatments,
thereby saving money, time and expediting the resolution of
their disease. It can serve as an educational tool for both novice
and experienced doctors to interpret images and improve
diagnostic accuracy. Computer-aided tools can be provide a
prediction and also highlight important parts of the image,
providing invaluable information to clinicians. For future work
it is recommended to experiment with state-of-the-art models
such as transformers or newer CNN models and use large
datasets by possibly combining multiple different datasets to
produce a more generalised model. The next steps for this
research include using videos instead of still images and
providing image captioning to describe the image or video
to provide a more detailed analysis.
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Abstract—Wireless Capsule Endoscopy (WCE) captures im-
ages of the gastrointestinal (GI) tract and transmits the images
in a wireless manner. Due to the hardware limitations of the
capsule and the varying imaging conditions within the GI tract,
the recorded images can have a low spatial resolution with a high
frame rate or a high spatial resolution with a low frame rate.
Although it is generally common to have low spatial resolution
to capture details of the GI tract, low spatial resolution limits
the detection of minor anatomical features and abnormalities in
the small intestine and other portions of the GI tract. Super-
Resolution (SR) is a class of software-based techniques that are
used to enhance the resolution of a Low-Resolution (LR) image.
This work proposes a new model referred as DCAN-DenseNet
with Channel Attention Network for Super-resolution of LR
WCE images. The design of DCAN consists of multiple strategies
adopted from state-of-the-art methods such as Channel Attention
Network (CAN) from RCAN and short dense connections from
DenseNet to extract details from LR observation. Additionally,
to improve the accuracy of the SR images, we create a derivative
dataset of 10,000 images from a publicly available WCE dataset.
The proposed approach has been validated against multiple state-
of-the-art methods by conducting quantitative evaluation using
perceptual metrics. The analysis is complemented by statistical
validation to demonstrate the consistency of the proposed method
over the other models for the SR task.

Index Terms—Wireless Capsule Endoscopy, Super Resolution,
Channel Attention Network, DCAN

I. INTRODUCTION

The Wireless Capsule Endoscopy (WCE) is a minimally
invasive medical technology that utilizes a small, swallowable
capsule equipped with a wireless camera to capture images and
videos of GastroIntestinal (GI) tract. Captured video frames
are transmitted to a recording device outside the patient’s
body. It allows for a comprehensive examination of the small
intestine similar to conventional endoscopy but with additional
convenience. The recorded images and videos provide valuable
diagnostic information about GI disorders such as Crohn’s
disease, tumors, bleeding, or Inflammatory Bowel Disease
(IBD) [1]. It generates an average of 50k to 60k images
while moving through the GI tract, and a normal colon video
test generates about 8 hours of RGB video data. Thus, the
vast amount of data generated by WCE presents a challenge
for medical professionals, who must verify numerous images
or videos. Continued advancements in technology and image

analysis algorithms further enhance the capabilities of WCE,
leading to improved patient care and outcomes.

Resolution plays a crucial role in all vision-driven ap-
plications including medical diagnosis. A low resolution
video/image can lead to incorrect diagnostics for both ma-
chines and medical practitioners [2]. The image sensor
equipped with High-Resolution (HR) can help visualise in-
tricate details within the digestive tract, such as mucosal
irregularities, ulcers, polyps, or early-stage tumors [3]. The
clear and detailed images obtained from HR camera allow-
ing doctors for targeted interventions or surgical procedures.
However, a capsule consisting of an optical dome, illuminator,
imaging sensor, battery, and RF transmitter in a capsule-shaped
structure with a length of 26 mm and a diameter of 11 mm
[1] can work in two modes. The small-sized structure leads to
hardware limitations in terms of spatial resolution of sensor
which is usually coarser. The minimum resolution obtained
by a capsule used is 336 × 336 pixels with 24 frames per
second (fps) [4] and the maximum resolution of 1 megapixel
can reduce the frames rate to 5 fps. Having higher fps is
advantageous in covering large area and despite of having
numerous benefits of WCE technology, the operational fps
suffers from inadequate frame resolution and video quality
leading to adverse diagnostics [5]. Thus, there is a clear
demand for methods capable of enhancing the resolution of
capsule endoscopes to facilitate both subjective and objective
analysis.

Image Super-Resolution (SR) is a software-driven method
used to enhance the LR image to its corresponding HR one.
Single Image SR (SISR) and Multi-Image Super-Resolution
(MISR) are the two types of SR methods, with SISR being
more popular due to its advantages over MISR, where multiple
images of the same scene and image registration are required.
However, SISR poses a challenging ill-posed problem as a
single LR image may correlate to several HR solutions [6]. The
recent advancement of deep learning techniques has resulted
in a number of techniques that can be used in SISR making
it possible to use for other applications.

Inspired by the success of applications in other domains, we
present a SR approach for WCE images using a deep learning-
based approach which we refer to as DCAN-DenseNet with
Channel Attention Network (CAN). The proposed architecture

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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incorporates the CAN mechanism for extracting high-level de-
tails by feature scaling in an adaptive way. Such a mechanism
allows us to leverage the high frequency details in WCE image
to identify and retain abnormality present in the WCE images
for downstream classification tasks like pathology classifica-
tion. Additionally, we also introduce short skip connections to
extract low-level features that are common in images from the
GI tract. The low level features are then combined with the
high-level features to generate information-rich SR images. To
enhance the reconstruction process and recover image details,
we also employ bottleneck, deconvolution, and reconstruction
layers. The potential of the proposed model is evaluated on a
new derived dataset created from the original Kvasir capsule
endoscopy dataset [4]. Our contributions from this work are:

• A new SR approach that leverages Channel Attention
Network (CAN) and Dense connections to generate SR
images from LR images.

• The CAN in the proposed model adaptively re-scales the
features by taking into account the inter-dependencies
among different features. Further, the use of short skip
connections in convolution layers specializes in excessing
the high-level features to obtain low-level features in the
input LR image, which is important for better detailing
in reconstruction of the SR image.

• Unlike other approaches, we propose training and testing
of WCE images in the Y -channel of Y CbCr which
provides better performance metrics compared to RGB
color scheme and corresponds closely to the Human Vi-
sual System (HVS). This is validated through empirically
through various metrics such as Peak Signal to Noise
Ratio (PSNR), Structural Similarity Index Metric (SSIM)
and Learned Perceptual Image Patch Similarity (LPIPS)
which asserts our intuition of using Y CbCr over RGB
processing.

• Further, due to unavailability of datasets for SR tasks,
we create a new derivative dataset from Kvasir Cap-
sule Endoscopy [4] to train the SR network. The new
dataset consists of 10,000 samples which are manually
pre-processed to improve the accuracy of the proposed
network. All our experiments are conducted using state-
of-the-art methods to demonstrate the applicability of
proposed approach for SR generation and is supported
by detailed analysis of various perceptual metrics.

II. LITERATURE REVIEW

SR methods based on deep learning aim to capture the
complex relationship between given LR and HR images. Dong
et al. [7] introduced Super-resolution Convolutional Neural
Network (SRCNN) consisting shallow network of having 3
layers. Later, Kim et al. increased the network depth to 20-
layers proposed VDSR [8] and DRCN [9], which achieved
notable improvements over the previous SRCNN indicating
the importance of network depth. In similar lines, Lim et al.
[10] further advanced this concept by creating the EDSR, a
very wide network an exceptionally deep network consisting
of approximately 165 layers, using simplified residual blocks.

However, it is worth noting that merely stacking residual
blocks to construct deeper networks does not necessarily lead
to significant improvements.

Tong et al. introduced DenseNet [11] leveraging dense
connections between convolution layers and growth rate to
quantify the amount of new information added by each layer
to the final reconstruction. Also due to dense connections all
level of high, average and low level of features can be extracted
easily. Thus, the DenseNet model utilizes feature maps from
each layer that are merged with the previous layer, and the
data is replicated multiple times for effective training of very
deep networks. Zhang at el. proposed RCAN [12] model with
Residual in Residual (RIR) structure where the Residual Group
(RG) acts as the basic module and allows for residual learning
in a coarse level through the use of Long Skip Connections
(LSCs). This model also introduces a Channel Attention
(CA) mechanism, which adaptively re-scales each channel-
wise feature by modeling the inter-dependencies across feature
channels. This mechanism enables the network to focus on
more useful channels, thereby enhancing its discriminative
learning ability. Several other SR works have been proposed
to enhance the perceptual quality of SR results. For instance,
Ledig et al. [13] proposed an SRGAN model that improves
the perceptual quality of super-resolved images beyond pixel-
level improvements. Similarly, Wang et al. [14] proposed an
Enhanced Super Resolution using GAN (ESRGAN), which
introduces several improvements over SRGAN. These works
have been tested on visible (i.e., RGB scene) images and
are also extended to medical data. Mahapatra et al. in [15]
used Progressive GAN (P-GAN) for accurate detection and
proper segmentation of anatomical landmarks on MRI images.
Additionally, a few other SR techniques have also been utilized
to improve the quality of images acquired by traditional
endoscopic cameras. Yasin et al. [16] learned a mapping from
low-to-high resolution mapping using conditional adversarial
networks with a spatial attention block to improve the resolu-
tion by up to factors of ×8, ×10, ×12 respectively. However,
the approach is limited to conventional endoscopy images.
Thus, the super-resolution of WCE images is not attempted
by researchers in the community to the best of our knowledge
motivating us to focus on SR task for WCE images.

III. PROPOSED METHOD: DENSENET WITH CHANNEL
ATTENTION NETWORK (DCAN)

With the aim of recovering rich high-frequency details from
capsule endoscopy images, the proposed approach consists
design inspired from RCAN [12] and DenseNet [11]. The
RCAN model is one of the state-of-the-art methods for SR of
visible images which has introduced novel Channel Attention
Network (CAN) to improve the learning ability of CNN
network. Similarly, dense connections are usually employed in
the CNN network to learn effective features from LR images
and also to reduce the effect of overfitting or underfitting.
Motivated by these, we incorporated the above concepts in the
proposed method which we referred as DCAN-DenseNet with
Channel Attention Network. In WCE images, low-frequency
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components display a relatively homogeneous pattern, the
high-frequency elements typically correspond to regions char-
acterized by edges, texture, and other intricate details. Thus,
the use of CAN in the proposed model enhances channel-wise
feature representations, and hence, DCAN gains the advantage
to extract information more precisely. The fusion of this
with dense connections results in a powerful architecture that
leverages the strengths of both RCAN and DenseNet, enabling
it to effectively handle the task at hand and achieve superior
performance in acquiring intricate details within WCE data.

The architecture of the proposed model for the task of SR of
WCE images for upscaling factors ×4 is depicted in Fig. 1.
It can be observed that the WCE LR image is given to a
convolution layer first to learn low-level features. After this, a
single CAN layer is added to learn the features channel wise
from the LR image. Subsequently, a series of DCAN blocks
are employed to learn high-level features. Towards the end,
the bottleneck layer is used to decrease the input feature maps
and finally, the deconvolution layer is employed to upsample
the feature images, and the output of the reconstruction layer
generates an SR image.

A. DCAN Block

In the proposed network, we utilize DCAN blocks as
fundamental building unit. This design allows to enhance
details and promotes feature reuse throughout the network,
leading to more comprehensive and expressive representations
at higher layers. The network architecture of DCAN block is
depicted in Fig. 2. There are n number of DCAN blocks used
in our architecture, which we fix to 8 empirically. Each DCAN
block consists of Channel Attention Network (CAN), one
convolution layer and m number of DCAN layers (i.e., m = 8)
that enable to extract high-level features in the output image.
Moreover, one skip connection is added to avoid vanishing-
gradient problem. The block schematic DCAN layer is shown
in Fig. 3 (a). Each DCAN layer consists of a convolution layer
having kernel size 3×3 and Relu activation function with short
skip connection. Thus, the proposed model consists of short
skip connections and also global skip connections for effective
learning and also to avoid gradient problem.

B. Channel Attention Network (CAN)

The earlier CNN-based SR methods [7]–[11], [17], treat LR
channel-wise features equally, which is not optimal for real-
world cases. To address this issue and focus the network on
more informative features, CAN mechanism is proposed in
RCAN [12] that exploits the interdependencies among feature
channels. Generating different attention for each channel-wise
feature is a crucial step in this mechanism. An LR information
contains both low-frequency and high-frequency components
that are valuable for SR. However, the low-frequency parts are
relatively homogeneous, while the high-frequency components
typically correspond to regions with edges, texture, and other
details. Second, each filter in the convolution layer operates
within a local receptive field, which limits its ability to exploit
contextual information beyond the local region. Thus, the use

of CA in the proposed method is helpful to learn the features
effectively by assigning proper weights to each feature. The
architecture for CAN is depicted in Fig. 4. It consists of
adaptive average pooling with a convolution layer with kernel
size 3×3, attached with a ReLU activation function, which is
passed to another convolution layer with kernel 1 × 1, and a
skip connection is used to add the input values with the output
of the sigmoid function.

C. BottleNeck Layer

In order to enhance the compactness and computational
efficiency of the model, we use a bottleneck layer to decrease
the quantity of feature maps prior to their input into the
deconvolution layers. The bottleneck layer shown in Fig. 3(b)
is used to reduce the output features from DCAN blocks to
a lower dimension. It consists of a convolution layer having
kernel size 1 × 1 with ReLU activation function. In our
proposed model, we reduce the features to 256 features using
the bottleneck layer.

D. Deconvolution and Reconstruction Layers

Deconvolution layers can be seen as the inverse operation
of convolution layers, allowing for the learning of diverse
upscaling kernels that work together to predict HR images.
It provides two advantages: By conducting computations in
the LR space, the SR reconstruction process is accelerated.
Additionally, the inclusion of a deconvolution layer enables
the utilization of contextual information from LR images
to infer high-frequency details. The network design of the
Deconvolution layer consists of two pixel-shuffle layers as
shown in Fig. 3(c), where each layer upsamples the image by
a factor of ×2. Pixel-shuffle rearranges the feature maps by
reshaping them into a higher resolution. Then it rearranges
the pixel values to get the final image. We are using two
pixel-shuffle layers which give us total upsampling of factor
4. Finally, a reconstruction layer, consisting of a convolution
layer with a 3× 3 kernel, is used to generate SR images from
the feature maps in the RGB space.

IV. EXPERIMENTAL ANALYSIS

The design of the proposed model is validated by conduct-
ing subjective and quantitative evaluations. We empirically
verify DCAN’s effectiveness with state-of-the art architectures
qualitatively by taking a patch from the output images from
all state-of-the-art models. Additionally, the same is quan-
titatively verified using different standard SR metrics such
as Peak Signal to Noise Ratio (PSNR) & Structural Simi-
larity Index Metric (SSIM) and using perceptual metric i.e.,
Learned Perceptual Image Patch Similarity (LPIPS). Finally,
the statistical analysis of the proposed model is also carried
out to show the consistency of the SR results. Our method is
benchmarked against state-of-the-art models such as SRGAN
[13], CycleGAN [18], DenseNet [11], and RCAN [12] for
comparison purposes.
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Fig. 1. The network architecture of proposed model DCAN, where k denotes kernel size and numerical values mentioned below every layer indicates size of
output features.

Fig. 2. The network architecture of DCAN block used in proposed model-
DCAN. The values below every layer indicate the number of output features.

Fig. 3. The design of (a) DCAN Layer, (b) Bottleneck Layer and (c)
Deconvolution Layer in the proposed method.

Fig. 4. The architecture design of Channel Attention Network (CAN) used
in DCAN model.

A. Dataset

One of the novel contributions of the work is the creation of
new derivative dataset from the available Kvasir Capsule En-
doscopy Dataset [4] consisting of WCE images. In the original
Kvasir dataset, each image is in the RGB color space with size
of 336 × 336 pixels. The dataset contains a total of 47, 236
images, which are categorized according to different medical
anomalies. As the original dataset contained redundant images
with many border areas with black pixels, we have curated

the dataset for the SR task by manually selecting images and
removing redundant images from the Kavasir dataset. The new
SR dataset therefore consists of 10, 000 training images, 550
validation images and 1000 testing images 1. As mentioned
earlier, the WCE images from the original Kvasir dataset
containing non-informative part in the border area. Those
regions are removed manually through cropping resulting in
images of 280×280 pixels for all images. The proposed model
along with all other models are experimented on the new datset
and SR results are generated.

B. Training details

Firstly, to prepare LR-HR pair of WCE images, we consider
the original images as the HR image and applied bicubic
down-sampling with factor ×4 and obtained LR image. These
LR-HR pairs are fed to the proposed model to train it to
generate SR images. Further, each LR image has also been
transformed into Y CbCr space and only the Y -channel was
used for training which represents a gamma-encoded channel
that predominantly contains high-level feature information. On
the other hand, the Cb and Cr channels are chroma-encoded
channels that do not contain as many high-level features. To
save computational time during the process and improve the
extraction of high-level features in the SR image, the Cb
and Cr channels are directly interpolated and added to the
output image. The training process aimed to minimize the loss
function, which was taken as the Mean Squared Loss (MSE).
The training was carried out for a total of 300 epochs with a
batch size of 32. Additionally, the Adam optimizer was used
with a learning rate of 0.0001. This protocol was used on all
the state-of-the-art models and SR results are generated. While
testing, we use the YCbCr space of test LR image to generate
the SR image.

C. Comparison with state-of-the-art models

Qualitative Analysis: The qualitative comparison of various
SR methods on scaling factor of ×4 is depicted in Fig. 5.
One can inspect by looking at the zoomed-in patches that
the proposed model generates better SR solutions than other
models. Also, the SSIM map of each patch is shown below the

1The dataset will be made available for researchers provide they have
license agreement for original Kvasir Capsule dataset.
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HR Bicubic SRGAN CycleGAN DenseNet RCAN Proposed
Fig. 5. Qualitative comparision of proposed models with state-of-the-art models using SSIM maps (where yellow region shows similarity and blue region
shows disimilarity.)

patch SR image, which shows the similarity between generated
SR and HR images. The yellow part in the SSIM maps shows
the similarity between SR and HR images. However, the green
and blue regions in SSIM maps show the dissimilarity between
SR and HR images. We can observe that the proposed model
has more similar parts than the other methods. In the first row
SSIM maps in Fig. 5, it can be observed that the bicubic output
image exhibits the highest dissimilarity. Comparatively, other
models such as RCAN and DenseNet perform better than other
models as well as the bicubic method. However, the proposed
model demonstrates the lowest dissimilarity among the bicubic
method and all other state-of-the-art models. Additionally, in
the second row, it is apparent that SRGAN and DenseNet ex-
hibit better performance in comparison. However, the proposed
model demonstrates the highest structural similarity, indicating
superior performance in terms of preserving the structural
characteristics of the image.

Quantitative Analysis: To validate the SR results quanti-
tatively, the average SSIM and PSNR values for the testing
images of each model are provided in Table I. We calculated

the average PSNR and SSIM on Y channel as well as the
RGB channels. From the table, it can be observed that the
proposed DCAN model has the highest PSNR in both the Y
channel and the RGB channel. Additionally, the DCAN model
also demonstrates the highest SSIM values, implying a better
structural similarity. When considering LPIPS for perceptual
image comparison, lower LPIPS values emphasize the model’s
ability to capture perceptual similarity effectively. Remarkably,
the DCAN model exhibits the lowest LPIPS values among all
different models, suggesting superior perceptual similarity.

Statistical Analysis: Finally, the statistical analysis is also
conducted on the SR results of the proposed model along
with the others to ensure the model consistency compared to
state-of-the-art models. Standard deviation demonstrates the
deviation in the values from the mean and hence it should
be low for an algorithm. The values of standard deviation of
each model are presented in Table II. As we can observe the
values of our proposed model DCAN is lowest in comparision
to all state-of-the-art models. From the given values, it can be
noticed that while comparing PSNR consistency Y channel has
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TABLE I
QUANTITATIVE COMPARISON OF THE PROPOSED MODEL OVER OTHER

MODELS USING DIFFERENT METRICS SUCH AS PSNR, SSIM AND LPIPS
ON RGB AND Y-CHANNELS.

Model PSNR ↑ SSIM ↑ LPIPS↓
Y-channel RGB Y-channel RGB RGB

Bicubic 38.1069 37.2111 0.9296 0.9057 0.2310
SRGAN [13] 38.0377 37.0021 0.9291 0.9049 0.1972
CycleGAN [18] 38.0121 36.9441 0.9123 0.9012 0.1984
DenseNet [11] 39.6842 38.8596 0.9401 0.9369 0.1353
RCAN [12] 40.1438 39.4613 0.9427 0.9371 0.1359
Proposed 40.2261 39.5389 0.9486 0.9378 0.1346

TABLE II
THE STATISTICAL COMPARISON OF THE PROPOSED MODEL WITH OTHER
DIFFERENT METHODS USING PARAMETER OF STANDARD DEVIATION OF

PSNR AND SSIM VALUES OVER MEAN VALUES IN RGB AND
Y-CHANNELS.

Model STD. dev. of PSNR ↓ STD. dev. of SSIM ↓
Y-channel RGB Y-channel RGB

Bicubic 3.8943 2.2102 0.0353 0.0347
SRGAN [13] 3.3490 2.6924 0.0348 0.0324
CycleGAN [18] 3.6802 2.1937 0.0356 0.0319
DenseNet [11] 4.2025 3.1996 0.0378 0.0372
RCAN [12] 3.5612 2.8753 0.0367 0.0350
Proposed 3.0006 2.0186 0.0270 0.0306

lower consistency than the RGB channels and while comparing
SSIM, its vice-a-versa. Thus, one can conclude from this that
there is high peaks in Y -channel i.e., Y -channel works great
on majority images and provides better PSNR values, but as it
focuses only on Y -channel, the features in Cb and Cr channels
are not percieved properly, so when the high-level features
are in the Cb and Cr channels, it loses important information
which is although a rare case as all important information is
in Y -channel majorly.

V. CONCLUSION

Due to the hardware limitations of the WCE sensors,
the captured data results in coarser resolution which affects
the diagnosis accuracy of the diseases. We present a new
SR approach DCAN using dense connections and channel
attention modules to convert LR images to SR images. As the
proposed network integrates the advantages of Channel At-
tention Network (CAN) from RCAN and utilizes short dense
connections inspired by DenseNet, the proposed approach
is able to effectively extract details from LR observations.
Experiments show that the proposed network can perform
better than other existing state-of-the-art SR models both
quantitatively and qualitatively. The results are supported with
a detailed analysis of quality assessment metrics such as
PSNR, SSIM, and LPIPS and statistical analysis of obatained
results. A future direction in this work is to focus on improving
the perceptual quality and assess it with medical practitioners.
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Abstract—During a clinical examination, a capsule endoscope,
like the PillCam, allows the entire digestive system of the patient
to be photographed. The images can be analysed to detect
abnormalities. However, the rendering is of low quality compared
to colonoscopy. Distorted colour reproduction of tissues and
blood vessels can be one reason for overseeing abnormalities,
and improvement of colour reproduction could improve the
examination. For this purpose, a colourimetric calibration must
be performed in order to deduce the correction to be applied.
The ColorChecker is a chart containing a number of standard
colour patches sampled over the gamut of perceivable colours,
providing ground truth reference. Thus, it is possible to measure
the rendering of these colours and then compare and adjust
its values. However, the colours that appear inside the gas-
trointestinal system are a subset of perceivable colours. It also
appears like typical PillCam’s are constructed accordingly. As
shown in this paper, colour correction based on the ColorChecker
becomes saturated. Therefore, we develop a novel colour checker
based on colours sampled from colonoscopy images and perform
corrections based on that. An evaluation of both inter- and intra-
camera variation indicates that the same calibration method
should perform quite well for all PillCam Colon2 capsules. A
subjective evaluation of colour corrected videos was performed by
two experienced gastroenterologist, indicating that the proposed
method obtains a more faithful colour reconstruction.

Index Terms—Colour correction, capsule endoscopy video

I. INTRODUCTION

Serious diseases of the digestive system, such as Crohn’s
disease, inflammatory bowel disease, and cancer, affect many
people. In Europe, colorectal cancer is the second most com-
mon cause of cancer deaths1.The survival rate is closely related
to early detection of cancer.

Lately, the primary goal of preventing death from diseases
has moved towards prevention of development of disease
through screening [1]. However, fear of pain and the taboo
associated with the colonoscopy, is a major drawback in

This work was supported by the Research Council of Norway (RCN), under
the project CAPSULE no.300031

1http://www.euro.who.int/en/health-topics/noncommunicable-
diseases/cancer/news/news/2012/2/early-detection-of-common-
cancers/colorectal-cancer (1/5-23)

making people volunteer for such screening [2]. The Wireless
Capsule Endoscope (WCE) [3], which is a pill-sized capsule
that the patient swallows, is a good alternative for screening,
as it avoids the problems mentioned above. The WCE carries
cameras that record video of the gastrointestinal (GI) tract.
However, WCE video streams are long and time-consuming to
evaluate, and current WCE has lower resolution, lower frame
rate, and lower quality rendering than colonoscopy, making it
more difficult to detect pathologies of the GI wall.

Generally, it is of great importance that colours are recon-
structed properly, as the colour of tissues and blood vessels can
help to detect abnormalities. What properly means depends on
context. For automatic pathology detection colour accuracy is
important, whilst for gastroenterologist it is colour consistency
that matters [4]. Colour accuracy refers to the ability of a
system to produce exact colour matches from input to output.
Colour consistency refers to the ability to produce image data
with a similar response in a human interpreter.

To deal with the problem of colour distortion, in this
paper we aim at improving colour reproduction in PillCam
Colon22 videos through post-processing. For this purpose, a
colorimetric calibration must be performed in order to deduce
the relevant correction to be applied. The ColorChecker [5],
is a chart containing a number of standard colour patches
sampled over the gamut of perceivable colours, providing
ground truth reference. Thus, it is possible to measure the
rendering of these colours and then compare and adjust the
values accordingly. However, the colours appearing inside the
GI system are a subset (or sub-gamut) of perceptible colours.
Also, it appears like many WCE’s, like PillCam Colon2, are
constructed accordingly, emphasising colours typically present
in the human GI-system [6]. Therefore, colour correction
based on the ColorChecker leads to saturated colour recon-
struction. Therefore, we develop a novel colour checker for
the task, named ColonColorChecker (CCC), based on colours

2https://www.medtronic.com/covidien/en-us/products/capsule-
endoscopy/pillcam-colon-2-system.html (1/5-23)
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sampled from colonoscopy images, and perform corrections
based on this. We also analyse variability in colour processing
both within one Pillcam, as well as inter-variability across sev-
eral different PillCam’s. Two experienced gastroenterologists
assessed the results of colour correction subjectively.

In Section II preliminaries are provided. In Section III our
colour correction methods are described. In Section IV results
are presented. Section V, summarises and concludes the paper.

II. PRELIMINARIES

A. The GretagMacbeth ColorChecker

For several experiments we will use the GretagMacbeth
ColorChecker [5], a colour calibration device consisting of a
cardboard arrangement of 24 coloured sample squares. These
patches have spectral reflectances intended to mimic those of
additive and subtractive primaries as well as natural objects,
such as human skin and foliage, and a grey scale of six
different values ranging from white to black. The patches
have consistent colour appearance under a variety of lighting
conditions and are stable over time.

B. Data sets

We have ten videos from different WCE’s of type PillCam
Colon2 available, obtained from ten different patients. These
videos were collected during clinical trials by PhD candidates
Anuja Vats and Bilal Ahmad under consultation of Prof. and
Gastroenterologist Øistein Hovde, at Innlandet Hospital Trust,
Gjøvik in 2021. For all PillCams, captures of objects that could
later be used for geometric, colourimetric, and radiometric
calibration, among them the ColorChecker, was taken prior
to the patients ingesting them. The ColorChecker was placed
4cm away from the tip of the PillCam inside a black box
with diffuse absorbing material, reflecting no light. With these
videos it is possible to analyse each camera separately as well
as inter-camera variation.

C. L∗a∗b∗ space, colour difference and correction

The CIELAB colour space is a perceptually uniform colour
space in three dimensions with orthonormal basis L∗, a∗, b∗,
established in 1976 by the International Commission on Il-
lumination (CIE) [7, pp.94-95]. The L∗-axis corresponds to
brightness or luminosity according to a psychometric scale
ranging from 0 to 100, where 100 represents white, or total
reflection, and 0 represents black, or total absorption. Two
orthonormal axes, a∗ and b∗, are chromaticity coordinates
determining the hue and saturation of a given colour, where
a∗-axis represents colours from red to green (−a∗) and the
b∗-axis represents colours from yellow to blue (−b∗).

The colour difference, ∆E, measures the difference between
two colours (points) in CIELAB colour space [7, pp.95]

∆E =
√
(L1 − L2)2 + (a2 − a1)2 + (b2 − b1)2, (1)

with L1, a1, b1 the coordinates of the first color and with
L2, a2, b2 the coordinates of the second. ∆E is on a scale
from 0 to 100, where 0 means imperceptible difference and
100 means total distortion. For example: ∆E ≤ 1.0 is not

perceptible by the human eye, ∆E < 2 is perceptible by
a professional, ∆E ∈ [11, 49] refers to similar colours, and
∆E = 100 means that the colours are opposite.

To correct for colour distortion one applies a Colour Correc-
tion Matrix (CCM) which transforms and input RGB-, XYZ-
or L∗a∗b∗ vector, typically a known colour target captured
by a camera, to an output (corrected) RGB-, XYZ- or L∗a∗b∗

vector. The CCM is a 3×3 (or 4×3) matrix whose entries are
determined to satisfy the relationship between a known target,
like the ColourChecker, and the output of particular camera,
like the PillCam, so that the average brightness remains
constant. If captures are taken with the relevant camera of a
known target, like the ColourChecker, one can estimate the
CCM that minimizes ∆E, then use the resulting CCM to
correct colours in subsequent images. Estimating the CCM
given a reference input is a standard procedure implemented
in many computation tools, like MatLab3.

Typically one can map from some measured RGB values,
[R,G,B]T , to the CIE tristimulus values, [X,Y, Z]T , via a
3× 3 matrix [7, p.64-67], then to L∗a∗b∗ as [7, p.94]

L∗ = 116f(Y/Yw)− 16, a∗ = 500
(
f(X/Xw)− f(Y/Yw)

)
b∗ = 200

(
f(Y/Yw)− f(Z/Zw)

)
,

(2)

where Xw, Yw, Zw are the XY Z values for the reference
white being used, and where

f(u) =

{
u1/3, u > (24/116)3

(841/108)u+ 16/116, u ≤ (24/116)3.
(3)

One can measure the XYZ values from some object directly
using a spectroradiometer (See Section III): Take a coloured
object that reflects light by some spectral reflection function,
R(λ), from some light source with spectrum I(λ), where λ
denotes wavelength. The corresponding XY Z values are then

X =
K

N

∫
λ

R(λ)I(λ)x̄(λ)dλ, Y =
K

N

∫
λ

R(λ)I(λ)ȳ(λ)dλ,

Z =
K

N

∫
λ

R(λ)I(λ)z̄(λ)dλ, with N =
K

N

∫
λ

I(λ)ȳ(λ)dλ,

(4)

where x̄(λ), ȳ(λ) and z̄(λ) are the CIE 1931 colour matching
functions [7, p. 68], and K is some scaling factor.

III. COLOUR CORRECTION METHODS

A. Correction with ColorChecker

The ColorChecker is present in some captures at the be-
ginning of the available PillCam videos. Each image includes
additional information surrounding the actual captures as seen
in Fig. 1(a). The frames are cropped before analysis.

We will use standard algorithms for recognition and anal-
ysis of the ColorChecker in MatLab4. However, due to the
recording conditions and the size of the ColorChecker, parts

3https://uk.mathworks.com/help/images/correct-colors-using-color-
correction-matrix.html (1/5-23)

4https://www.mathworks.com/help/images/ref/colorchecker.html (1/5-2023)
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of it can’t be distinguished in the image. Additionally, there
is a strong lens distortion at the edges of the camera. This
can lead to erroneous detection. Also, it is necessary that the
ColorChecker is oriented vertically (or horizontally) to use the
dedicated algorithm. Therefore, we rotate the frames using the
Hough transform [8] prior to analysis.
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Fig. 1. (a) Example of ColorChecker capture as it appears in one of the trials.
(b) Correct detection of ColorChecker.

One needs to check if the detection of the grid is correct
before the image can be applied for analysis. An example
of a correct detection is shown in Fig. 1(b). The reference
points, or landmarks, marked in red are well placed, correctly
identifying the corners of the ColorChecker, leading to correct
identification of the grid. The order of the patches and the size
of the regions of interest (ROIs) are shown as blue numbers
and rectangles, respectively. Each ROI consists of 15 × 20
pixels, which we average to determine the measured colour
value. The whole patch is not covered as it is essential not to
include pixels outside the patches as the RGB values would
then be biased by the presence of many black pixels. Regions
with specularities and other distortions should be avoided.

We then have 24 numbered ROIs, each containing 300
pixels, where the average RGB intensity of each is extracted.
Then we know the L∗a∗b∗ reference values, and its possible
to calculate ∆E introduced in Section II-C, characterising the
difference in tone between ground truth (ColorChecker) and
reproduction of the Pillcam. Then one can derive a CCM that
applies throughout the relevant video.

B. Colon Gamut

As the results reveal in Section IV, correction based on the
ColorChecker leads to saturation. One reason may be, as iden-
tified in [6], that PillCams do not process all colours equally.
That is, there is a sub-gamut of colours being emphasised.
For this reason, we determine the gamut constituting the set
of L∗a∗b∗ triplets present in the colon, named colon gamut.

Obtaining ground truth colours of a human colon directly is
not possible. As colonoscopes possess high quality rendering,
they are considered the gold standard. Therefore, we created a
data set from colonoscopy images available on the Gastrolab
Image Gallery web page5 and applied them to determine the

5https://www.gastrolab.net/(1/5-23)

colon gamut. We chose a data set consisting of 50 images
from healthy patients, and applied the colorcloud function in
MatLab6 to obtain the colon gamut, depicted in Fig. 2.

Fig. 2. The L∗a∗b∗ values obtained from colonoscopy images, named colon
gamut. The black borders refer to the gamut of sRGB.

C. ColonColorChecker (CCC)

We created our own ColorChecker based on the colon
gamut, which we named ColonColorChecker (CCC). To obtain
this, we had to address which colours to choose, what printing
material to apply when printing the CCC, and how to measure
the L∗a∗b∗ values of the printed patches.

It was decided to select 24 colours as shown in Fig. 3(a), to
which we added 6 patches for the gray-scale. The patches were
first distributed uniformly over the whole colon gamut. Then
the CCC was test-printed, and patches with similar colours
were further adjusted by moving them further apart in the
gamut. The resulting CCC is shown in Fig. 3(b).

b* a*

L*

(a) (b)

Fig. 3. (a) Distribution of the 30 selected colours allowing to visualise the
realised grid (b) ColonColorChecker of 30 custom patches.

Then there is the question of the choice of paper and
ink to print the CCC, as this affects the appearance of the
colours. Also, during clinical use, the PillCam passes through
the patient’s digestive system in fluids. In order to reproduce
the conditions of a realistic PillCam capture, it was decided
to capture the CCC in water (this cannot be done with the
ColorChecker, as it is not water resistant). Therefore, ink and

6https://www.mathworks.com/help/images/ref/colorcloud.html(1/5-23)
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paper that do not change significantly when exposed to water
were chosen. To ensure the high print quality and accurate
colour reproduction, the printing was carried out on an Océ
ColorWave 600pp plotter with a coated Tyvek paper7. Once the
CCC was printed, initial water resistance tests were performed.

1) L∗a∗b∗ measurements of printed patches: As we make
our own ColorChecker, deviations due to the printing process
are of no big concern as long as one stays within the colon
gamut, and the patches do not become too similar. The relevant
properties can be measured after printing, and it is these values
we use as ground truth (or reference). The input arguments
for the computation procedure of the correction matrix are
the measured L∗a∗b∗ values from the PillCam and the ground
truth L∗a∗b∗ values measured from the printed CCC.

To measure the L∗a∗b∗ values of the CCC, we first used
the Eye-one Pro spectrophotometer8, which measures the re-
flectance of the patches for wavelengths from 380nm to 730nm
in increments of 10nm. Five measurements were made after
printing, with variation of medium and brightness in the room,
to obtain an average and reduce the uncertainties linked to the
device and the experimental conditions. The CCC was then
placed in water for 30 minutes. Once the CCC was dry, five
new measurements were taken to detect any colour variation
due to water exposure. Fig. 4 shows the results. The grey
bars, ‘ref’, corresponds to the color values originally chosen
before printing. The difference between the blue/orange bars
and the grey bars is mainly due to the printing process. What
is important is the proximity of the measured values between
the dry and wet conditions (blue vs. orange bars). From this,
it can be concluded that the paper and the colour patches do
not change significantly when exposed to water.

To approach a more realistic situation, we measure the
values of L∗a∗b∗ with the CCC in water. With no waterproof
measuring device available, the measurements had to be done
at some distance. We used a TSR CS-2000 spectroradiometer9,
then measured the patches with the CCC placed in a water
container. The TSR CS-2000 measures radiance for the given
object over wavelengths from 380nm to 780nm with 1nm
increment. The TSR CS-2000 was positioned at about 50cm
from the target at an angle of 45◦ to the water surface in a
room with known and fixed illumination.

The first step was to measure the radiance of a reference
plate, an optimal diffuser, to determine the maximum radiance
values for the given lighting conditions, and thus to find
L∗a∗b∗ values independent of the room’s lighting. Then the
30 CCC patches were measured. Further, it is necessary to
determine the reference values of the reference tile and the
power spectral density (PSD) of the PillCam lighting.

Given the measured data, the following calculations are
needed to arrive at the L∗a∗b∗ values: First, we have

Tc = Tm/Tr, R(λ) = Pm/Tc, (5)

7https://www.dupont.com/tyvekdesign/design-with-tyvek/why-tyvek.html
8www.xrite.com/categories/calibration-profiling/i1-solutions (1/5-23)
9https://sensing.konicaminolta.us/us/products/cs-2000-spectroradiometer/
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Fig. 4. Bar graph of a∗- and b∗ values for CCC measured with the Eye-one
Pro spectrophotometer. In blue, the measurements after printing. In orange, the
measurements after immersing the CCC in water for 30 minutes and drying.
The grey bar represents the values chosen for the CCC (before printing).

where Tr are values between 0 and 1 correcting for imperfec-
tions of the reference tile, Tm are radiance values measured
with spectroradiometer with the reference tile as target, and
Pm are the radiance values measured with the spectrora-
diometer against a colour patch immersed in water. Then
(X,Y, Z) = h(R(λ), IPillCam(λ)) and (L, a, b) = g(X,Y, Z),
where IPillCam(λ) is the PSD for the PillCam lighting, h is as in
Eq (4) using the CIE 1931 1nm colour matching function, and
g, the function mapping from the CIE 1931 XY Z colour space
to the CIE 1976 L∗a∗b∗ space, in Eq. (2) (see Section II-C).

Four different measurements with two different intensity
levels in the room’s lighting was made to make sure that room
lighting had no influence on the obtained values.

The analysis of the 30 patches is done more or less in the
same way as for ColorChecker.

IV. RESULTS

A. Deviations within and among videos in data set

With videos from 10 different PillCams it is possible to
check if the cameras has a similar reproduction of colours.

We compare ∆E of each patch, for all frames of a video
and over all videos, to quantify the deviation of colours. In
Fig. 5 we have given one example of boxplots representing
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the distribution of L∗a∗b∗ values for colour patch 4 (foliage
or grass green), for 5 different PillCams The dashed line
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Fig. 5. Boxplots representing L∗a∗b∗ values for 5 videos for patch no. 4,
foliage green, computed over several captures of the ColorChecker.

represents the true (reference) value (foliage). Note that there
is some deviation both within as well as between different
videos. However, the deviations are not very large, particularly
for the a∗ and b∗ values. This is also the case for the other
23 patches. Furthermore, the average ∆E measured over all
24 patches for all available videos and cameras is 23.6, with
a standard deviation of 12.7. These are quite high values
considering that beyond a ∆E > 5, the human visual system
can perceive differences.

The statistical study on the 10 videos shows that the colour
reproduction is poor (average ∆E = 23.6). In the following,
we provide a statistical study on the origin of this large average
∆E value. For this purpose we change the reference value
for the ∆E calculation: The first reference are the values
from the ColorChecker, the second reference are the values
obtained in the 1st video, the third reference are the values
obtained from the 2nd video, and so on. In this way, we obtain
a comparison of inter-camera variation. Selected results are
shown in Fig. 6. These two figures are made for two different
patches (ROIs): 1 dark skin and 9 moderate red. Both show
that the cameras react in similar ways. Indeed, the comparison
of the ∆E deviations for the ColorChecker (dark blue bars),
with the other references, shows that each camera captures
the colours in a similar way. This capture will be erroneous
in view of the ∆E values in relation to the ColorChecker.
The analysis shows a high ∆E, but one that is similar for all
PillCams. However, as the inter-camera deviation is small, one
can determine a global model, and the correction derived can
be applied on any PillCam Colon2 without large deviations.

B. Colour Correction

1) Correction using ColorChecker: We select relevant
frames and process them as described in Section III-A to
derive a colour correction matrix. Knowing the deviation from
the ground truth for each patch, the objective is to correct

the image to reduce ∆E. To do this, a correction matrix is
calculated using a linear least squares fit. The two inputs are
the reference L∗a∗b∗ values for each ColorChecker patch and
the captured L∗a∗b∗ values from PillCam.

At first sight, one might think that each frame generates
the same correction matrix. However, between two frames
under the same experimental conditions (fixed camera and
identical lighting conditions), there is a perceptible difference.
This leads to different L∗a∗b∗ values for each patch and
therefore a different correction matrix for each frame. Our
approach is to use the average of the correction matrix over all
available frames for the same camera. In order to be as general
as possible, one could do this for each individual PillCam.
However, with the results of Section IV-A in mind, one can
assume that different PillCams have similar characteristics.
Assuming that the cameras of PillCam COLON 2 have similar
characteristics under the same experimental conditions, one
can apply the colour correction derived here without having
to record a video with the ColorChecker in advance.

An example of colour correction of a PillCam image is
shown in Fig. 7(b) and the original image is shown in Fig. 7(a).
One can observe that the colours are quite saturated, and its
for this reason that we created the CCC.

2) Correction using ColonColorChecker (CCC): In order
to get as close as possible to realistic conditions, the PillCam
and CCC were immersed in water. The CCC was placed at
3cm distance from the PillCam in a dark room. That is, the
only light present is from the PillCam itself. We had only
one PillCam available, so we made two videos with that one.
The video did not change significantly between the two takes,
in line with the results in Section IV-A. Fig. 7(c) shows an
example image correction with the matrix derived on the basis
of CCC. The colours reconstructed based on CCC in water are
less saturated than those obtained with the ColorChecker, but
they are also more realistic than the original image, which is
confirmed by the subjective test.

C. Subjective evaluation by Gastroenterologists

We involved two gastroenterologists with long experience
to evaluate 5 videos of 10 seconds length, where the original
PillCam video was displayed side by side with videos cor-
rected based on ColorChecker and CCC. The experiment was
conducted in a room at Innlandet Hospital Trust, Gjøvik, with
the same type of lighting conditions found in rooms typically
used for assessment of colonoscopy images. The monitor was
calibrated accordingly. We posed the question: Which video
provides the most similar colour reconstruction to that of
colonoscopy? The correction based on CCC and ColorChecker
was chosen in 70% and 10% of the cases, respectively, while
the original was chosen in 20% of the cases.

A discussion with the gastroenterologists revealed that they
preferred the colour reproduction of the CCC corrected videos,
but that the contrast is reduced, making it harder to discern
detail. This indicates that the colour correction does its thing,
but contrast enhancement should be considered in conjunction
to obtain better diagnostic value. Also, it would be easier for
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Fig. 6. Boxplots of ∆E values using varying reference for computation for patches: (a) 1 dark skin. (b) 9 moderate red.
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Fig. 7. Color correction result: (a) Original image. (b) Correction using
ColorChecker. (d) Correction using CCC in water.

the gastroenterologists to evaluate diagnostic value if specific
pathologies are present in the test videos.

V. SUMMARY AND CONCLUSION

Improvement of colour reproduction could allow better
detection of anomalies during clinical examination if done
properly. We considered colour correction of videos from
PillCam Colon 2 in this paper. For this purpose, we created
our own ColorChecker, named ColonColorChecker, which
allowed us to select the colours that typically appear in the
human colon. The correction matrices we derived should be
applicable for any camera of type PillCam Colon 2. On the
face of it, the corrections made provide a clear improvement
of colour in clinical videos. This was also concluded by

two gastroenterologist who evaluated the colour correction in
several videos. However, currently the contrast is somewhat
lower in the corrected videos than in the original, reducing
the diagnostic value of the approach.

In future work we will aim at improving the diagnostic value
where contrast enhancement will be applied in conjunction
with the colour correction. We will conduct more thorough
subjective tests with several more candidates choosing video
clips containing specific pathologies. This will make it pos-
sible to conclude more firmly about the diagnostic value of
the approach. Another investigation is to check if artificial
intelligence algorithms can better detect anomalies if they are
fed images with corrected colours.
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Abstract—In this paper, we propose a novel dataset called
the Quality-Oriented Database for Video Capsule Endoscopy
(QVCED) which serves as the primary crucial resource for evalu-
ating the quality of Wireless Capsule Endoscopy (WCE) images
and videos. Serving as a benchmark, the QVCED encourages
the design of learning-based enhancement methods to address
image quality assessment and enhancement challenges in WCE.
This comprehensive dataset consists of a large number of WCE
videos encompassing common distortions encountered in clinical
practice, including noise, defocus blur, motion blur, and uneven
illumination. Moreover, video quality has been intentionally de-
graded at varying distortion severity levels to faithfully replicate
real-world conditions. The extensive analysis demonstrates the
diversity and practical relevance of this dataset in the WCE do-
main that motivates the advancement of a more precise diagnosis
regarding gastrointestinal disorders. The complete dataset is pub-
licly available through the following link: https://cloud.math.univ-
paris13.fr/index.php/s/b74TQk7mMpHDXKT.

Index Terms—Wireless Capsule Endoscopy, Video Quality
Assessment Dataset, Subjective Evaluation.

I. INTRODUCTION

Wireless Capsule Endoscopy (WCE) has revolutionized
medical practices for gastrointestinal (GI) disease screening
and diagnosis [1]. However, a major challenge in WCE is
obtaining optimal image quality, which directly affects di-
agnostic accuracy. Indeed, WCE image quality suffers from
distortions due to the limitations of the sensor technology
and the constrained acquisition environment. For example,
narrow apertures and small sensors with limited dynamic range
and sensitivity generate noise within captured frames [2].
Especially, additive white Gaussian noise in WCE images is
the accepted standard model [3]. Unstable environments result
in excessive blurriness [4] due to the uncontrolled and random
motion of the capsule, while the capsule’s limited lighting
coverage cause uneven illumination [5]. These distortions
can decrease the performance of tasks like lesion detection,
recognition, and tracking in the gastrointestinal tract.

To address image quality limitation issues, due to the afore-
mentioned distortions, numerous learning-based algorithms
[2], [6], [7] have been proposed. Specifically, recent advance-
ments in image restoration and enhancement techniques rely
on learning-based methods that require pairs of corrupted and
clean images for training. However, in the case of WCE, the

absence of a dedicated quality assessment dataset poses a
significant challenge. Therefore, a dataset specifically designed
for assessing the quality of WCE images, with varying levels
of distortions, is crucial for developing accurate and reliable
image enhancement algorithms. To the best of our knowledge,
there is currently no specialized dataset available specifically
for assessing video quality in WCE. Existing datasets com-
monly used for quality assessment, such as LIVE Mobile
VQA [8], KoNViD-1k [9], TID2013 [10], CSIQ [11], and
CID:IQ [12], have primarily focused on natural images for
over two decades. In the field of medical imaging, datasets like
RIQA [13] and LVQ [14] have been developed specifically for
retinal and laparoscopic image/video evaluation, respectively.
However, it is important to note that these datasets are not
efficient for training learning-based quality enhancement tech-
niques for WCE images due to the inherent dissimilarities in
medical imaging types and modalities. Moreover, most med-
ical databases are tailored for segmentation and classification
tasks, making this work a valuable contribution to fulfill a real
requirement in medical imaging and in particular on evaluating
and improving WCE image quality.

Consequently, toward the demand for a comprehensive
video quality assessment dataset, we propose the Quality-
Oriented Database for Video Capsule Endoscopy (QVCED),
derived from the Kvasir-Capsule dataset [15]. QVCED covers
a wide range of scenarios with different pathologies and mul-
tiple types of distortions, prioritizing realistic conditions. The
dataset is produced through a two-stage process. In the first
stage, reference videos that meet the required quality criteria
are carefully selected from the Kvasir-Capsule dataset [15].
Next, the reference video is thus subjected to a degradation
process in which a controlled level of degradation is applied
by means of the physical parameters of the used distortion
generation model.

The subsequent sections of this paper are structured as
follows: Section II describes the creation process of the
QVCED dataset. Within this section, Section II-A outlines
the initial selection process for reference videos, while Sec-
tion II-B explains the generation of simulated distortions in the
chosen reference videos. Afterward, Section III focuses on the
analysis and discussion of the proposed dataset. Specifically,

979-8-3503-4218-5/23/$31.00 ©2023 IEEE
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Section III-A presents the implementation and results of a
subjective test, including opinion scores from expert and non-
expert observers regarding the simulated distortions. Further-
more, Section III-B analyzes the content diversity of the
QVCED dataset. Finally, this paper concludes in Section IV,
summarizing the key findings and implications of this work in
terms of the creation and analysis of the proposed dataset.

II. PROPOSED DATASET - QVCED

In this section, we describe the dataset creation process.
We provide a comprehensive overview of the methodologies
encompassing the selection of reference videos (Section II-A)
and the simulation of distortions applied to the chosen refer-
ence videos (Section II-B).

The first step is to select reference videos from an existing
WCE dataset. We have created a dataset comprising 20 original
reference videos extracted from the Kvasir-Capsule dataset
[15]. These videos have a duration of 10 seconds, a resolution
of 336×336 pixels, and a frame rate of 30 frames per second
(fps). The following subsection provides a comprehensive
description and the selection process of the reference videos.

A. Reference Videos Selection

The selection of the reference videos aimed at optimizing a
wide range of pathological scenarios and maximizing continu-
ous temporal information which enables a thorough evaluation
and analysis of quality enhancement algorithms, facilitating
advancements in the WCE domain.

To ensure scene content diversity, the QVCED dataset
includes fourteen distinct categories. These categories encom-
pass various WCE findings such as Pylorus (PY), Ampulla
of Vater (AV), Ileocecal Valve (IV), Normal Clean Mucosa
(NCM), Reduced Mucosal View (RMV), Blood-Fresh (BF),
Blood-Hematin (BH), Foreign Body (FB), Erythema (ERY),
Angiectasias (ANG), Erosion (ERO), Ulcers (ULC), Lym-
phangiectasia (LYM), and Polyp (PYL). This diverse selection
allows for a comprehensive evaluation of algorithms and
techniques in the field of wireless capsule endoscopy, covering
a broad spectrum of medical scenarios commonly encountered
in clinical practice.

Some images from reference videos are shown in Fig. 1.
These metrics help identify the highest-quality videos for
each finding, ensuring that the chosen reference videos meet
the required quality standards which enhances the dataset’s
reliability and usefulness for various research purposes.

1) Noise Assessment: To estimate the noise level, we em-
ploy the fast noise variance estimator proposed by Immerkaer
[16]. The process begins by converting the input image
I ∈ RH×W×3 into grayscale, resulting in the grayscale image
Igray ∈ RH×W where H,W are the height and width of the
images. A noise estimation mask, denoted as M ∈ R3×3,
is then used to estimate the standard deviation of additive
white Gaussian noise in the image. This mask is derived from
two elements approximating the Laplacian of the image. The

estimated standard deviation of the noise σ̂n is computed as
follows:

σ̂n =

√
π

2

Σx,y|Igray(x, y) ∗M|
6(W − 2)(H − 2)

, (1)

2) Blur Assessment: To measure the level of blur in an
image, the Perceptual Blur Index (PBI) [17] was used as
a thresholding metric. The PBI metric takes into account
the perceptual differences in how the Human Visual System
(HVS) perceives the addition of blur to an already blurred
image compared to a sharp one. Mathematically, the PBI is
defined as the difference between the total radial energy of the
input image, denoted as ER(w), and the total radial energy of
its binomial filtered version, denoted as ERf (w). The formula
for calculating the PBI is as:

PBI = log

(
1

wmax
Σw|ER(w)− ERf (w)|

)
(2)

ER(w) =
1

K
ΣK |F (w, θk)|, θk =

kπ

K
, (3)

ERf (w) =
1

K
ΣK |Ff (w, θk)|, θk =

kπ

K
, (4)

where F (w, θk) and Ff (w, θk) represent the centered Fourier
coefficients of the input images and its binomial filtered
version, respectively, in the polar coordinates.

3) Uneven Illumination Assessment: To assess the presence
of uneven illumination, the Illumination Histogram Equaliza-
tion Difference (IHED) [18] is employed. IHED measures the
impact of histogram equalization (HE) on the spatial distribu-
tion of background illuminance (BI). The evaluation process
involves converting the image into the HSV color space to
extract the brightness channel V ∈ RH×W . Subsequently,
the background illuminance BI(x, y) ∈ RH×W is extracted
through the application of a low-pass filtering method of size
h = H

4 . Finally, IHED is calculated using the following
formula:

IHED =
σD

1
H×W

∑H−1
i=0

∑W−1
j=0 BI(x, y)

, (5)

where σD is the standard deviation of the difference signal D,
which is computed as:

D(x, y) =| BI(x, y)− T (BI(x, y)) |, (6)

where T denotes the histogram equalization transformation.
A video is considered acceptable for use as a reference only

if the levels of all three distortions (i.e., noise, blur, and uneven
illumination) are below a predetermined threshold. Once the
reference video is chosen, the next subsection will outline how
we simulated distortions on these selected reference videos.

B. Distortion Generation
We have integrated four prevalent degradations consisting of

noise, uneven illumination, defocus, and motion blur into our
extensive dataset. To ensure a faithful reproduction of each
distortion, we have applied suitable mathematical models to
every individual frame of the reference video. In the current
stage of our research, we only added one type of distortion to
each video, with the same severity throughout its entirety.
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(a) Pylorus (PY) (b) Ampulla of Vater (AV) (c) Ileocecal Valve (IV) (d) Normal Clean  
Mucosa (NCM)

(e) Reduced Mucosal
View (RMV)

(f) Blood-Fresh (BF) (g) Blood-Hematin (BH)

(h) Foreign Body (FB) (i) Erythema (ERY) (j) Angiectasias (ANG) (k) Erosion (ERO) (l) Ulcers (ULC) (m) Lymphangiectasia (LYM) (n) Polyp (PYL)

Fig. 1. The frames extracted from reference videos in the QVCED dataset represent a diverse range of findings.

1) Noise Model: Noise is a common distortion in video
systems, particularly in WCE. It is caused by narrow apertures,
small sensors, and limited dynamic range [2] and negatively
impacts the effectiveness of the endoscopic examination pro-
cess. In our study, we included the Additive White Gaussian
Noise (AWGN) model in our dataset which assumes that the
video noise follows a Gaussian distribution. Mathematically,
the distorted image can be represented as:

Inoisy = I+N (7)

where I represents the original image, and N ∼ N (0, σ2
n)

represents the random noise value following a Gaussian dis-
tribution with standard deviation σn. To control the severity,
AWGN level is configured with σn ∈ {5, 10, 20, 30}.

2) Defocus Blur Model: In WCE, the wireless capsule is
equipped with a fixed-focus lens endoscope [19]. This design
introduces defocus blur when objects in the scene are not
precisely at the camera’s focal distance. To simulate defocus
blur, a low-pass filtering of the input image using an isotropic
Gaussian impulse response as shown in Fig. 2a is commonly
used. The isotropic Gaussian kernel is used to simulate the
rotational symmetry around the optical axis of the blurring
effect. The impulse response associated with this blur, denoted
as hdb(x, y), is defined as:

hdb(x, y) =
1

2πσ2
db

exp
−(x2 + y2)

2σ2
db

, σdb ∈ {1, 2, 3, 5} (8)

The blurring extent is determined by the standard deviation
parameter σdb. Increasing σdb leads to stronger smoothing and
more noticeable blurring effects. The size of the convolution
mask, denoted as Wdb, is chosen to preserve the energy of the
filtered image signal. To preserve 99% of the total energy of
the Gaussian, a size of 6σdb at least is required. The filter size
Wdb should be an odd number as:

Wdb = 2× ⌈3σdb⌉+ 1 (9)

Fig. 2a illustrates an example of a defocus blur kernel of
standard deviation σdb = 1.

3) Motion Blur Model: The rapid and sudden movements
of the capsule endoscope can cause blurring, influenced by
factors such as fast camera motions at low frame rates, the in-
ability to adjust lens focus, camera mechanism instability, and
sensor sensitivity to light variations [19]. When the capsule
endoscope moves in a straight line, it results in linear motion
blur. The blur kernel, denoted as hmb, can be formulated
using two known parameters: the direction of motion blur
θmb and the length of motion blur Lmb ∈ {5, 10, 15, 25}. The
formulation is as follows:

hmb(x, y) =

{
1

Lmb
, if

√
x2 + y2 ≤ Lmb

2 ,− tan θmb =
x
y ,

0, otherwise.
(10)

We evaluate the motion in each frame in order to add a motion
blur corresponding to the actual motion of the video. In the
initial stages, the Lucas-Kanade method [20] is commonly
used for estimating the movement direction of a capsule
endoscope through optical flow estimation. Two consecutive
frames captured by the capsule endoscope are subtracted and
Otsu thresholding technique [21] is applied to generate a
foreground binary map. The optical flow is then estimated
using the Lucas-Kanade method on the center of gravity of
the foreground. Fig. 2b illustrates an example of a motion blur
kernel, which is configured by two parameters: the direction
θmb and the length Lmb.

4) Uneven Illumination Model: The motion of the capsule
endoscope, caused by the gastrointestinal tract’s peristaltic
activity and limited capsule light, can introduce uneven il-
lumination. To simulate this effect, the reference image is
first converted from the RGB color space to the HSV color
space. Then, we perform a pointwise multiplication of the
reference image with a mask. The coefficients of this mask,
which are determined in the spatial plane (Fig. 3a), can
be represented mathematically as a hybrid distribution that
integrates two-dimensional distributions from one the normal
variable and one log-normal variation [22]. Fig. 3b,c show
the generated masks of the hybrid distribution in two different
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(a) Defocus blur kernel (b) Motion blur kernel

Fig. 2. Visual representation of the blurring kernel, characterized by a defocus
blur standard deviation of σdb = 1 and motion blur with Lmb = 20, θmb =
π
4

, respectively.

angles θ, respectively. However, in this preliminary work, only
a simulated circular-gradient mask was taken into account. As
depicted in Fig. 3d, the mask M(x, y) ∈ RH×W is defined to
conform to the dimensions of the original image.

M(x, y) = 255−
[
2∆I

W

√
(x− xc)2 + (y − yc)2

]
, (11)

where M(xc, yc) is the circle center at coordinates (xc, yc) ∈
{(112, 224), (168, 168), (224, 224)}. To achieve varying lev-
els of illumination, the difference in intensity between the
brightest pixel of the image and the darkest pixel is set as
∆I ∈ {80, 100, 135, 170}. In the future, we plan on using the
previously defined hybrid distribution as a mask.
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Fig. 3. Gradient masks to simulate the Uneven Illumination.

In summary, the dataset creation process involved the sim-
ulation of four distinct types of distortion, each type having
four different severity levels. This resulted in a total of 320
degraded videos in the QVCED dataset. A comprehensive
overview of the dataset, including specific details such as the
types of distortions and severity levels, can be found in Table I.

In the following section, some extensive experiments are
conducted to analyze the diversity and practical applicability
of the proposed dataset.

III. DATASET ANALYSIS

To evaluate the proposed dataset, some experimental studies
were conducted. First, a subjective test (Section III-A) was
performed to assess and validate the dataset’s quality and its
alignment with human perception. This test evaluates how well
the dataset is perceived by human observers and ensures its
overall quality. In a second round of experiments, statistical

TABLE I
SUMMARY OF THE PROPOSED WIRELESS CAPSULE ENDOSCOPY VIDEO

QUALITY ASSESSMENT DATASET.

Number of
Reference Videos 20 Number of

Distorted Videos 320

Number
of Findings 14 Pathologies 6

Resolution
of Videos 336× 336 Frame Rate 30

Duration 10s Video Type .mp4
Number of
Distortions 4 Level of Distortion 4

Distortion Types Noise, Defocus Blur, Motion Blur,
Uneven Illumination

features of the dataset were analyzed to verify its content
diversity (Section III-B).

A. Subjective Test

Prior to the main WCE subjective test, observers underwent
the Ishihara 38 plates CVD verification [23] to detect any
red-green color deficiencies. Participants with an accuracy
above 70% were selected to complete the WCE subjective
test, ensuring normal color perception for accurate evaluation.

To conduct the WCE subjective testing process efficiently,
a pairwise-comparison protocol based on the ITU-T standard
[24] was implemented, following the described testing envi-
ronment.

1) Testing Environment: In the WCE quality assessment
subjective test, observers were presented with randomized
pairs of distorted videos and corresponding reference videos.
Randomization was implemented to eliminate presentation
order bias. For each video pair, observers were asked to
provide an opinion score indicating the perceived severity of
distortion. The implemented four-point scale corresponds to
four distortion severity levels including: (1) Hardly Visible, (2)
Just Noticeable, (3) Annoying, and (4) Very Annoying. The
obtained opinion scores allowed us to assess the subjective
quality of the distorted videos compared to the corresponding
reference videos. The Mean Opinion Score (MOS) for a video
is the average score given by observers for that video.

An online platform (shown in Fig. 4) was developed
and designed to facilitate the conduction of subjective tests.
The platform underwent thorough optimization to ensure
usability, including aspects such as background color, but-
ton size, and position. These optimizations aimed to en-
hance the testing experience and make it convenient for
observers to effectively complete the task following the ITU-
T standard. The source code of the platform is available at:
https://github.com/tansyab1/WCETest.

A total of 34 individuals, comprising 12 experts and 22 non-
experts, with diverse age groups and backgrounds, took part in
subjective the experiments. Fig. 5 displays the distribution of
participants’ age and the duration of their involvement in the
subjective test. Participants across various age groups were
included in the subjective test, as shown in Fig. 5a. This
diverse age distribution enhances the reliability of the test
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Fig. 4. WCE subjective test window.
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Fig. 5. Age and the processing time distributions of observers participated
in the subjective experiment.

outcomes by avoiding biases toward any specific age category.
Moreover, it is clearly noticeable from Fig. 5b that each
participant dedicated a minimum of approximately 5 seconds
to evaluate each video, demonstrating their focused attention
and commitment to efficient testing. This statistic affirms the
credibility and applicability of the test’s outcome.

2) Video Quality Score: As mentioned earlier, the evalua-
tion includes four levels of distortion. Level 1 represents the
minimal degradation of distortion, while level 4 represents the
most severe condition, where a higher value indicates a lower-
quality perception for the video observer. Fig. 6 compares

Level 1 Level 2 Level 3 Level 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
OS

Expert Noise
Expert Defocus blur
Expert Motion blur
Expert Uneven illumination
Non-Expert Noise
Non-Expert Defocus blur
Non-Expert Motion blur
Non-Expert Uneven illumination

Fig. 6. Comparison of the subjective score regarding experts and non-experts

the mean scores of experts and non-experts for the proposed
dataset. The presented data illustrates that experts and non-
experts hold a significant correlation between the obtained
scores. However, the experts exhibit a heightened level of
attention toward specific tasks, which enhances their sensitivity
to even the slightest deviations. Therefore, the dissimilarity
is more conspicuous when examining videos exhibiting low
levels of distortion.

B. Diversity Data Analysis

To analyze the dataset’s diversity and broad applicability,
experiments were conducted to verify significant variations in
video content. These experiments provide valuable insights
and benefits for various image-processing tasks. A diverse
dataset serves as a valuable resource for benchmarking, val-
idation, and training, facilitating significant advancements in
image processing.

To evaluate the content diversity of the datasets, we used
deep features of dimension 4096 extracted from a pre-trained
VGG-16 [25] on ImageNet [26]. By employing t-SNE (t-
distributed Stochastic Neighbor Embedding) [27], we pro-
jected these high-dimensional features onto a 2D subspace.
The resulting visualization, shown in Fig. 7, succinctly rep-
resents the content diversity across the datasets. The broad
spectrum displayed in the visualization illustrate the extensive
range and variety of visual content present in the dataset.
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Fig. 7. t-SNE visualization of the embedded feature generated from 20
reference videos by VGG-16 pre-trained network

In addition to the primary analysis, a further examination
of the dataset is conducted to analyze the distribution of
image entropies, considering both spatial and temporal infor-
mation. Second-order entropy analysis provides insights into
the spatial features within the dataset, where higher entropy
indicates a greater content diversity of images. Furthermore,
the incorporation of third-order entropy analysis takes into
account inter-frame information. By considering the relation-
ships and dependencies between consecutive frames, the third-
order entropy provides a deeper understanding of the temporal
dynamics and variations within the dataset. This analysis
offers a comprehensive perspective on the dataset’s complexity
and richness. In this work, calculations were performed on
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a dataset of 6000 images from 20 reference videos. Fig. 8
illustrates the broad histogram of the entropies, indicating
a wide range of visual features and affirming the practical
applicability, diversity, and usefulness of the QVCED dataset.
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Fig. 8. Distribution of Variations and Entropy among 20 reference videos.

IV. CONCLUSION

In this work, we have introduced a preliminary quality
assessment dataset specifically designed for wireless capsule
endoscopy. QVCED comprises four distinct distortion types,
with each type further subdivided into four levels, resulting in
a total of sixteen variations. This dataset serves as a quality
assessment resource specifically targeting the WCE domain.
Especially, it addresses the previously neglected data challenge
and offers valuable insights for evaluating and analyzing the
effectiveness of image and video processing algorithms in this
particular field. The dataset’s strength lies in the extensive
diversity of its visual content, enabling researchers to tackle
demanding real-world contexts. In this work, the addition of
synthetic distortion to a given frame may not have a noticeable
impact if the frame is already affected by authentic distortion.
In the future, we could remove any existing distortion before
applying a synthetic one.
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Abstract—Instance segmentation offers advantages over se-
mantic segmentation in medical image analysis by providing more
detailed information for accurate identification and tracking
of individual objects. However, existing instance segmentation
methods for medical image do not always account for limited
and variable data, resulting in overfitting. In order to overcome
the aforementioned limitations, this paper prposes a novel one-
stage end-to-end deep learning framework, named FEES-IS,
which is tailored to perform real-time instance segmentation
on Flexible endoscopic evaluation of swallowing (FEES) videos.
The model incorporates sparse attention to prevent overfitting.
Moreover, we propose a loss function that improves instance
medical image segmentation accuracy. The study used a dataset
of 199 annotated FEES videos to train the model, which was sub-
sequently evaluated on an additional 40 videos from patients who
underwent consecutive FEES procedures at Fukushima Medical
University Hospital between December 2016 and August 2019.
The results show that FEES-IS achieved a mean average precision
(mAP) of 61.64 at a frame rate of 41.7 frames per second on a
single NVIDIA GeForce RTX 3090 graphics processing unit. This
performance is promising and suggests that the proposed FEES-
IS model has the potential to aid in the accurate identification
and tracking of individual objects in medical images obtained
from FEES procedures.

Index Terms—Real-time, Instance segmentation, Deep neural
network

I. INTRODUCTION

Dysphagia is a common swallowing disorder that occurs in
patients with neurological diseases and strokes [1]. Oropha-
ryngeal dysphagia is usually caused by abnormalities in the
oral cavity, pharynx, or esophageal sphincter, and it can lead
to severe complications, including aspiration pneumonia, mal-
nutrition, and dehydration. Therefore, the prevention and treat-
ment of aspiration are critical in improving the survival rates
of stroke survivors.The gold standard methods for studying
oropharyngeal dysphagia are flexible endoscopic evaluation
of swallowing (FEES) and videofluoroscopic swallow study
(VFSS). While FEES has advantages over VFSS, inexperi-
enced doctors may find FEES difficult to interpret accurately
[2], [3]. For example, Imaizumi et al. [4] revealed a notable
discrepancy in the texture-modified diet recommendations
made by experienced and inexperienced examiners after FEES.

This study was partially supported by the Competitive Research Fund, The
University of Aizu (2023-P-4).

Specifically, the experienced examiner advised a diet that was
more similar to a normal diet compared to the inexperienced
examiner. This difference in dietary recommendations is note-
worthy because an improperly prescribed texture-modified diet
can increase the risk of malnutrition or aspiration, which can
have significant clinical implications. To address this issue,
AI-assisted FEES using instance segmentation is a potential
solution. Instance segmentation offers a higher level of detail
and precision in understanding the swallowing process com-
pared to semantic segmentation. It not only labels different
regions of interest but also distinguishes individual objects
or instances within those regions. This level of granularity
is crucial in accurately identifying and tracking specific struc-
tures involved in swallowing, including the epiglottis, vocal
folds, or pharyngeal walls. By differentiating these instances,
instance segmentation enables a more comprehensive analysis
of swallowing, leading to improved diagnosis and treatment
planning for dysphagia.

We observe a significant imbalance between the number of
studies dedicated to semantic segmentation and instance seg-
mentation in the context of medical videos. This discrepancy
can be attributed to the well-established status of semantic
segmentation, which has been extensively used in medical
image processing, such as tumor and organ segmentation [5].
On the other hand, instance segmentation is rather new, and
its use in medical video analysis is still relatively limited.
Nevertheless, instance segmentation offers several advantages
over semantic segmentation in the video recording of FEES for
dysphagia diagnosis [6]. By enabling the separation of objects
into individual instances, instance segmentation can accurately
delineate object boundaries, thereby facilitating diagnosis and
treatment planning.

The FEES-IS system achieves a remarkable frame rate
exceeding 30 frames per second (FPS) while accurately seg-
menting specific regions of interest. This paper presents several
notable contributions:

• Introduction of the novel framework, FEES-IS, which is
specifically designed for real-time instance segmentation
in FEES videos. This framework effectively addresses
the inherent limitations commonly observed in existing
instance segmentation methods typically employed in
medical image analysis.
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• Integration of sparse attention within the FEES-IS model
to alleviate the issue of overfitting. By incorporating
this attention mechanism, the model achieves superior
generalization capabilities, particularly in scenarios char-
acterized by limited and variable data. As a result, the
model’s performance in instance segmentation tasks is
significantly enhanced.

• Proposal of a novel loss function that enhances the ac-
curacy of instance medical image segmentation. The im-
plementation of this loss function facilitates more precise
identification and tracking of individual objects within
FEES videos, leading to improved overall outcomes.

II. RELATED WORK

A. Instance Segmentation

Instance segmentation accuracy has been a key focus of
research, with MaskRCNN [7] serving as a popular two-
stage approach. However, the need for re-pooling features
for each region-of-interest renders these methods unsuitable
for real-time applications. While one-stage methods are faster,
they still entail complex computations that limit their speed.
YOLACT [8] is a real-time instance segmentation method that
achieves rapid performance by leveraging anchor-free detec-
tion and instance-aware feature normalization. YOLACT-like
methods integrate additional optimizations or modifications
to enhance performance, such as prototype refinement. These
real-time instance segmentation methods have significant im-
plications for medical image analysis applications where swift
and precise segmentation is essential for diagnosis and treat-
ment planning. For instance, YOLACT++ [9] incorporates sev-
eral optimizations, including prototype refinement and a more
sophisticated ResNet101-FPN backbone network, to improve
feature representation. PolarMask [10] uses a polar coordinate
representation to enhance detection of small and overlapping
instances in an image. On the other hand, YOLACTEdge [11]
integrates edge detection to enhance instance segmentation
performance in low-contrast or cluttered environments by fus-
ing edge maps with instance segmentation results to improve
boundary detection. Nonetheless, these YOLACT-like methods
are not customized to medical image analysis, which typically
involves limited training data.

B. Attention mechanisms

Attention mechanisms have been utilized in instance seg-
mentation to improve object proposals and instance masks.
Vaswani et al. [12] first introduced attention mechanisms to
selectively weight the contributions of various feature maps
or spatial locations during mask prediction. Recent studies
have explored the use of attention mechanisms in medical
image processing for instance segmentation. For example,
Ren et al. [13] developed an RNN architecture with an
attention mechanism that improved upon earlier formulations
and achieved state-of-the-art results on non-medical instance
segmentation datasets. CenterMask, developed by Lee et al.
[14], utilizes an attention mechanism and an anchor-free box

prediction scheme to achieve state-of-the-art performance in
real-time non-medical instance segmentation.

However, attention mechanisms can be computationally
expensive, which may limit their ability to achieve real-
time speeds in medical image tasks with limited training
data. The computation and memory resources required to
compute attention weights for each element in a set can be
significant. Moreover, most instance segmentation models for
medical image processing are based on pre-trained models that
were initially trained on non-medical image datasets, such
as ImageNet. These pre-trained models are then fine-tuned
on the medical image dataset for the specific task. However,
this pre-training on non-medical image datasets may not be
sufficient for learning effective attention patterns for medical
images [15]. Therefore, attention mechanisms may not work
effectively in these scenarios, and alternative methods such
as transfer learning or data augmentation may need to be
employed to improve performance. Obtaining labeled data
can be challenging and time-consuming in medical image
tasks, further complicating the use of attention mechanisms for
real-time applications. Therefore, while attention mechanisms
can benefit the performance of medical image processing
tasks with limited training data, their computational and data
requirements may make them unsuitable for real-time appli-
cations.

III. MATERIALS AND METHODOLOGY

A. Materials

Fig. 1(a) depicts the flowchart of this study. Fig. 1(b)
illustrates the use of a 2.6 mm diameter laryngeal flexible
endoscope for FEES. This study was conducted at Fukushima
Medical University Hospital on a consecutive series of patients
who were suspected of having oropharyngeal dysphagia and
who underwent Flexible Endoscopic Evaluation of Swallowing
(FEES) between December 2016 and August 2019. Prior to the
commencement of the examination, written informed consent
was obtained from all participants. Aspiration and penetration
are common complications associated with oropharyngeal
dysphagia, and detecting subglottis regions in swallowing
endoscopy is challenging. The act of aspiration is characterized
by the downward passage of food beyond the vocal folds into
the subglottis, whereas penetration occurs when food enters
the laryngeal vestibule without entering the subglottis. In this
study, the aspiration area was defined as the region comprising
the vocal fold and subglottis. The original video recording
obtained during FEES facilitates the evaluation of various
anatomical structures. The segmentation of the FEES video
highlights the aspiration area (in red), the penetration area (in
purple), and the test bolus (in green). The FEES-IS system
can recognize ”none” and ”white-out” images and records
the starting point of ”white-out” to remind laryngologists. In
the following subsection, we present the development process
of the FEES-IS system, which was designed to tackle the
aforementioned multi-class segmentation task.
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263 consecutive patients suspected of oropharyngeal dysphagia who underwent
FEES between December 2016 and August 2019 at Hospital 

Test set: 64 FEES videos

Training set: 159 FEES videos 
Validation set: 40 FEES videos

FEES-IS

Train the networks of
FEES-IS

Segmentation of Test
FEES videos

Data de-identification, randomization, and rate

Annotation of 25,630 images from 199 FEES videos

Data augmentation Classification using FEES videos
with instance segmentation

(a) (b)

Fig. 1. (a) Flowchart of this study. (b) FEES was performed using a laryngeal flexible endoscope with a diameter of 2.6 mm (ENF-V3, O, OLYMPUS Corp.,
Tokyo, Japan).
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Fig. 2. (a) shows the various anatomical structures that can be observed in a FEES video, such as the hypopharynx, arytenoid, epiglottis, vestibule, vocal
fold, subglottis, vallecula, and base of the tongue. (b) displays annotations of video frames indicating the aspiration area in red (created by the vocal fold and
subglottis landmarks), the penetration area in purple (created by the laryngeal vestibule), and the annotation of jelly as a test bolus in green.

B. Methodology

Fig. 3 illustrates the architecture of FEES-IS, which is com-
posed of various essential modules such as the feature back-
bone, feature pyramid, prediction head, fast non-maximum
suppression (fast NMS), protoNet, crop, and threshold.

The feature backbone module adopts ResNet-50 [16] with
deformable convolutional layers, which have been proven to
improve instance segmentation performance by adapting to ob-
ject boundaries, handling scale variations, and capturing spa-
tial context more effectively than conventional convolutional
layers. These deformable convolutional layers have achieved
state-of-the-art results on several benchmark datasets and are
a promising technique for enhancing instance segmentation
models [17].

The feature pyramid is a modified version of YOLACT++’s
feature pyramid, which generates feature maps at different
scales through lateral and top-down connections and employs
deformable convolutional layers. However, instead of integrat-
ing spatial attention modules into the feature pyramid, FEES-
IS incorporates proposed sparse attention before and after the
feature pyramid. The sparse attention method first divides the
feature maps of the feature backbone and feature pyramid into

8 groups, and then further splits each group’s feature maps into
K branches (K equal to the number of channel/the number
of groups). These branches are randomly used to build 4
streams, as shown in Fig. 3. One of the streams passes through
a channel attention module, which learns channel attention
weights using a global average pooling layer and a set of
trainable weights and biases. The attention weights are then
applied to the original feature maps for obtaining the channel-
wise attended feature maps. One of the streams passes through
a spatial attention module, which learns spatial attention
weights using a group normalization layer and another set
of trainable weights and biases. The attention weights are
then applied to the normalized feature maps for obtaining the
spatially attended feature maps. Two of the streams in each
group are passed without any attention operation to address
the issue of overfitting due to the complexity introduced by
attention mechanisms. Feature maps of these two streams are
concatenated with the channel and spatial attention maps, and
channel shuffle operators [18] are used for the incorporation
of cross-group information flow along the channel dimension.

The prediction head predicts the coefficients of each in-
stance mask, as well as its class probability and location. The
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Fig. 3. FEES-IS architecture.

mask encoding process reduces the dimensionality of the mask
data, making it computationally efficient.

Fast NMS optimizes the NMS [19] process used in object
detection by sorting bounding boxes by their confidence scores
and using a maximum weight matching algorithm to find the
optimal matching in a bipartite graph. ProtoNet is a Fully
Convolutional Network (FCN) that encodes instance masks
into a condensed vector representation, generating high-quality
masks. The crop module extracts the relevant feature map
regions based on the predicted instance masks, and the thresh-
olding step removes low-confidence instance masks, ensuring
that only high-quality predictions are retained.

IV. EXPERIMENTS

The proposed FEES-IS (FEES-IS-50) is compared with
several existing methods for instance segmentation, including
MaskRCNN [7], Yolact++ [9] with ResNet-50 (Yolact++-50)
and ResNet-101 (Yolact++-101), and FEES-IS with Convo-
lutional Block Attention Module [20] (FEES-IS-50-CBAM
and FEES-IS-101-CBAM) and with Shuffle Attention [21]
FEES-IS-50-SA and FEES-IS-101-SA). All the methods are
evaluated with the same settings to ensure a fair comparison.

Datasets: FEES-IS was trained on 199 FEES videos and
evaluated on 40 additional FEES videos (see Table I). The
training and test datasets were matched with respect to the
distribution of disease, age, height, and weight. The videos
were anonymized, randomly selected, and evaluated by a panel
of experienced laryngologists and dysphagia experts, each with
over 15 years of experience in conducting FEES.

Training Methodology: The model loss is a weighted sum
of the confidence loss (Lconf ), segmentation loss (Lseg), and
location loss (Lloc). Lconf is the softmax loss over multiple
classes confidences (c), i.e.,

Lconf =
N∑

i∈Pos

xp
ij log (ĉ

p
i ) +

∑
i∈Neg

log
(
ĉ0i
)

(1)

where the weight term α is set to 1 by cross validation and

ĉpi =
exp (cpi )∑
p exp (c

p
i ) .

(2)

Intersection over Union (IoU) is a commonly used eval-
uation metric for bounding box regression. It measures the
overlap between the predicted and ground-truth bounding
boxes by calculating the ratio of their intersection to their
union. Specifically, given a ground-truth bounding box Bgt =
(xgt, ygt, wgt, hgt) and a predicted box B = (x, y, w, h), the
IoU is calculated as

IoU =
|B ∩Bgt|
|B ∪Bgt|

. (3)

The Lseg is a loss function used to train a bounding
box regression model. Its aim is to minimize the distance
between the predicted and ground-truth bounding boxes while
maximizing their IoU similarity. The loss is defined by the
following equation:

Lseg = 1− IoU +
ρ2 (b,bgt)

c2
+

v2

(1− IoU) + v
. (4)

Here b and bgt are the central points of the predicted
(B) and ground-truth (Bgt) bounding boxes, respectively. The
Euclidean distance between these central points is denoted by
ρ(·). c is the diagonal length of the smallest enclosing box that
covers both the predicted and ground-truth bounding boxes. v
measures the consistency of the ratio between the width and
height of the bounding box. It is defined as:

v =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

. (5)

Here, wgt and hgt denote the width and height of bgt, and w
and h indicate the width and height of b. The arctan function
is used to ensure that the range of v is between 0 and 1. The
Lseg loss is used during training to adjust the parameters of
the bounding box regression model so that it produces accurate
predictions that have high IoU values with bgt

Lloc is the combination of Polar IoU Loss [10] and Carte-
sian IOU loss [22], which can be defined as Equ 6.

The model’s predicted polygon is represented by N vertices,
where xn and yn are the x and y coordinates, respectively, of
the nth vertex. The center of the polygon is denoted by xc

and yc, which are the x and y coordinates, respectively.
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TABLE I
CHARACTERISTICS OF THE PATIENTS.

Number Oral intake Dysphagia Age Age Height Height Weight Weight
(mean) (median) (mean) (median) (mean) (median)

Training data 199 94 178 62.75 71.00 154.31 161.20 49.09 48.40
Test data 40 18 37 64.28 72.50 152.44 160.00 47.13 47.40

Lloc = log

(
(xmax

1 ymax
2 − ymax

1 xmax
2 ) + (xmax

2 ymax
3 − ymax

2 xmax
3 ) · · ·+ (xmax

n ymax
1 − ymax

n xmax
1 )(

xmin
1 ymin

2 − ymin
1 xmin

2

)
+
(
xmin
2 ymin

3 − ymin
2 xmin

3

)
· · ·+

(
xmin
n ymin

1 − ymin
n xmin

1

) )
(6)

TABLE II
AP FOR AND FPS DIFFERENT IOU THRESHOLDS ON THE FEES DATASET.

Method AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 mAP FPS
MaskRCNN 80.48 77.76 73.71 69.32 68.11 65.32 60.38 51.82 39.20 34.70 62.08 6.28
Insta-YOLO 72.39 69.33 65.51 63.62 59.82 52.38 45.22 38.78 30.51 25.32 52.29 42.65
Yolact++-50 72.91 70.30 67.58 64.96 61.42 54.96 48.15 39.93 31.31 25.38 53.69 35.70

Yolact++-101 74.24 70.98 68.48 64.87 60.68 54.96 48.97 40.84 32.43 25.65 54.21 32.53
FEES-IS-50-CBAM 79.15 77.27 74.62 70.73 67.95 61.42 48.30 43.97 31.36 25.97 58.07 28.48
FEES-IS-101-CBAM 78.63 76.79 73.26 71.03 65.51 63.07 52.40 43.87 27.01 25.03 57.66 23.45

FEES-IS-50-SA 78.82 76.81 71.73 69.05 66.48 60.82 54.51 42.54 38.52 29.12 58.84 30.36
FEES-IS-101-SA 78.89 76.29 72.99 69.38 66.76 60.07 53.55 44.58 36.77 29.74 58.90 27.90

FEES-IS 80.06 76.19 73.27 70.91 67.33 62.18 58.60 52.08 41.74 31.99 61.64 33.18
FEES-IS-101 79.53 76.76 74.21 69.51 66.70 61.36 54.28 46.73 37.85 30.79 59.77 31.23

MaskRCNN-ori 79.91 76.98 73.45 69.67 65.91 61.72 56.25 47.92 35.20 30.35 59.74 6.28
Insta-YOLO-ori 73.59 70.41 67.85 61.63 57.39 52.27 45.75 37.25 29.56 25.36 52.11 42.65
Yolact++-101-ori 74.77 70.14 67.94 64.07 59.02 52.68 48.05 39.90 33.21 28.38 53.82 32.53

FEES-IS-ori 78.34 74.85 71.55 68.72 64.12 60.30 58.48 48.98 38.07 31.10 59.45 33.18

During training, a batch size of 8 was used on a single
NVIDIA GeForce RTX 3090 graphics processing unit. The
model was initialized with ImageNet pretrained weights and
optimized using stochastic gradient descent (SGD) for 400k
iterations. The initial learning rate was set to 10−3 and was
reduced by a factor of 10 at iterations 200k, 250k, 300k,
and 350k. A weight decay of 5 × 10−4 and a momentum
of 0.9 were applied to prevent overfitting. The training data
was augmented using techniques such as random cropping,
color jittering, random horizontal flipping, random rotation,
random scaling, Gaussian blur, and random noise, which are
commonly used in object detection algorithms such as SSD
[23]. The evaluationmetric was the average precision (AP) over
a range of IoU thresholds from 0.5 to 0.95 [24].

V. RESULT

Table II presents the performance comparison of our pro-
posed FEES-IS method with other instance segmentation ap-
proaches on the FEES dataset. We highlight the best result
in pink and the second-best result in yellow. Our proposed
method achieves competitive accuracy compared to YOLACT
while maintaining real-time performance (over 30 FPS). Al-
though FEES-IS has a slightly slower processing speed than
Insta-YOLO and Yolact++-50, it significantly outperforms
them in terms of mean AP(mAP) by 17.88% and 14.80%,
respectively. FEES-IS achieves the second-best mAP, which is
slightly lower than MaskRCNN by 0.70%, but at 4.28 times
the speed of MaskRCNN. Moreover, FEES-IS achieves the
best average precision at the AP85 and AP90, respectively, and

the second-best AP at the AP50, AP65, and AP80, respectively,
outperforming the widely used Yolact++-101 network by a
significant margin. The results of our experiments indicate
that implementing a deeper backbone (ResNet-101) does not
necessarily result in higher performance. In terms of mAP,
FEES-IS with ResNet-50 outperforms FEES-IS with ResNet-
101 by 3.13%.

Table II also shows the performance comparison of the
proposed loss function with the original loss function. The
methods labeled as MaskRCNN-ori, Insta-YOLO-ori, and
Yolact++-101-ori indicate these methods implement their orig-
inal loss function, while FEES-IS-ori denotes FEES-IS with
the same loss function as Yolact++. It is observed that the
proposed loss function is necessary for FEES-IS and MaskR-
CNN, while it has little influence on Insta-YOLO-ori and
Yolact++-101-ori. In terms of mAP, FEES-IS, Yolact++-101,
MaskRCNN, Insta-YOLO outperform their original loss func-
tion version by 3.68%, 0.72%, 0.35%, and 3.92%, respectively.

Fig. 4 shows An example of the original video frame with
(a) segmentation ground truth, and with qualitative results of
(b) MaskRCNN, (c) Yolact++-101, (d) FEES-IS-50-CBAM,
(e) FEES-IS-101, (f) FEES-IS. We can observe from the results
that neural networks equipped with attention mechanisms can
effectively identify the Vestibule as a coherent region, thereby
improving the interpretability of the segmentation results for
dysphagia doctors. However, in Fig. 4(d), we observe that
FEES-IS-50-CBAM misclassifies the background as test bolus,
which we attribute to overfitting caused by the limited training
data. Specifically, the network may struggle to classify pixels
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(a) (b) (c) (d) (e) (f)

Fig. 4. An example of the original video frame with (a) segmentation ground truth, and with qualitative results of (b) MaskRCNN, (c) Yolact++-101, (d)
FEES-IS-50-CBAM, (e) FEES-IS-101, (f ) FEES-IS.

under varying illumination and viewing conditions, which can
hinder its performance.

VI. CONCLUSION

This paper presents an algorithm for real-time instance seg-
mentation in medical images, specifically for Flexible endo-
scopic evaluation of swallowing (FEES) videos. By incorporat-
ing sparse attention and a specialized loss function, the model
is able to effectively prevent overfitting and improve accuracy.
The results of the study show that FEES-IS achieves com-
petitive accuracy compared to existing instance segmentation
methods while maintaining real-time performance. The dataset
used for training and testing was extensive and collected from
a large number of patients, providing a robust evaluation of
the model’s performance. Overall, the FEES-IS model has the
potential to enhance medical image analysis by providing more
detailed and accurate information for identifying and tracking
individual objects in medical images.
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Abstract—Attention deficit hyperactivity disorder (ADHD) is
one of the major psychiatric and neurodevelopment disorders
that affects 11% of children worldwide. Moreover, the prevalence
of ADHD has rapidly increased over time worldwide. According
to DSM-V, three types of symptoms such as inattention, hyperac-
tivity, and combined type (inattention with hyperactivity). So, it is
necessary to use a simple, non-invasive, and automatic detection
system for identifying children with ADHD at an early stage. The
objective of this study was to propose a machine learning (ML)-
based ADHD-combine type (ADHD-CT) detection system from
electroencephalogram (EEG) signals. EEG signals were recorded
from nineteen ADHD-CT children and fourteen healthy children.
We extracted five entropy-based features such as approximate-
based entropy, Shanon-based entropy, permutation-based en-
tropy, sample-based entropy, and singular value decomposition
(SVD)-based entropy from each signal. The subset of the most
informative and discriminative features was selected for ADHD-
CT using sequential forward floating selection (SFFS). Following
that, support vector machine (SVM) was implemented with
leave-one-out cross-validation for the identification of ADHD-CT
children and assessed its performances based on classification
accuracy. Our results illustrated that SVM with polynomial
kernel provided 96.87% classification accuracy to discriminate
children as ADHD-CT and healthy children. Our findings showed
that our proposed system can be used to detect children with
ADHD-CT.

Index Terms—ADHD, Identification, EEG Signals, Entropy
Measure, Feature Selection, Support Vector Machine

I. INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one of
the most common neurobehavioral disorders. Globally, 5% of
children are affected by ADHD [1]. Approximately 11% of
children between the ages of 4 and 17 years are affected
by ADHD in the USA [2]. ADHD is mainly diagnosed
in children aged 6-12 years and can last until adulthood
[3]. Children with ADHD have various challenges, including
lack of attention, carelessness, impulsivity, hyperactivity, and
combine types (inattention and hyperactivity) [4]. As a result,

children have suffered from severe complications, including
depression, anxiety, and attempts to commit suicide [5]. The
prevalence of males who have ADHD is comparatively higher
than females [6]. This figure has been rapidly increasing day
by day. So, diagnosing children with ADHD at an early
stage is still a very important research problem. This study
mainly focuses on detecting ADHD-CT children based on their
electroencephalogram (EEG) signals.

Various EEG-based studies concern children with ADHD
and they summarized various features like statistical features,
frequency-domain, and so on to discriminate ADHD patients
from healthy control [7]–[11]. Nowadays, EEG-based neu-
roimaging is used in order to diagnose numerous various
disorders, including ADHD. It is the most popular due to its
portability and its ability to image human brains. Although a
lot of existing studies has been proposed an ADHD detection
system based on EEG signals, there is still scope to improve
the efficiency and accuracy of ADHD detection systems. In
order to detect ADHD, it is essential to extract features
from EEG signals. Various existing studies have attempted
to identify potential features or biomarkers of ADHD, which
are extracted from EEG signals [7]–[11]. In this study, five
entropy-based features such as approximate-based entropy
(Approx-Ent), Shanon-based entropy (Shan-Ent), permutation-
based entropy (Per-Ent), sample-based entropy (Sam-Ent),
and singular value decomposition-based entropy (SVD-Ent)
were extracted from EEG signals. Previously, various linear
and non-linear classifiers, including support vector machine
(SVM), linear discriminant analysis, neural networks, and so
on, were widely used to differentiate ADHD subjects from
healthy controls [3], [8]–[10], [12], [13]. In this work, we
implemented to differentiate ADHD subjects from healthy
controls. The contributions of this study are listed as follows:

• Extract five entropy-based features such as Approx-Ent,
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Shan-Ent, Per-Ent, Sam-Ent, and SVD-Ent from each
channel.

• Determine the subset of the most discriminative and in-
formative features using textcolorbluesequential floating
forward selection (SFFS)-based method.

• Implement an SVM-based classifier to distinguish
ADHD-CT children from healthy classify and evaluate
its performance using classification accuracy.

II. RELATED WORK

Tenev et al. [14] introduced an ML-based classifier for
the discrimination of adults with ADHD and healthy controls
by analyzing EEG power spectra with four measurement
conditions: (i) eyes open; (ii) eyes closed, (iii) visual continu-
ous performance test (VCPT), and (iv) emotional continuous
performance test (ECPT). Whereas 19 EEGS signals were
recorded from 117 subjects (ADHD: 67 vs. HC: 50) aged 18 to
50 years. They performed spectral analysis using a fast Fourier
transform and computed delta, theta, alpha, and beta frequency
bands from each signal which were used as input features in
the prediction model for classification. They implemented a
forward selection scheme with an SVM-based classifier over
four different conditions to identify the best combination of the
most relevant features. After identifying the combination of the
most relevant features for each dataset, they also implemented
SVM with a 10-fold cross-validation protocol and obtained a
classification accuracy of 82.3%.

Khoshnoud et al. [15] also recorded 19 EEG signals with
256 sampling rate frequency and 16-bit resolution from 12
children with ADHD and 12 healthy controls during eyes-
closed resting. They extracted 8 types of features (4 frequency
band powers+4 non-linear) from each EEG signal and used
principal component analysis (PCA) for dimension reduction.
SVM and neural networks (NN) with a four-fold cross-
validation protocol were employed for the discrimination of
ADHD from healthy controls and obtained 83.03% classifica-
tion accuracy.

Kaur et al. [16] developed a diagnosis system for EEG
signals using the phase space reconstruction method to dis-
criminate adults with ADHD from healthy controls. They
collected EEG samples from 47 ADHD and 50 healthy sub-
jects using three conditions: (i) eyes open, eyes closed, and
(iii) continuous performance test(CPT). They extracted various
statistical features like maximum, minimum, mean, median,
and so on were extracted from Euclidean distances using phase
space reconstruction of signals. Moreover, they also extracted
Katz’s and Higuchi’s fractal dimensions, power of scale-
freeness in VG (PSVG), and graph index complexity (GIC)-
based features from EEG signals. Two techniques, such as
correlation and particle swarm optimization were implemented
to select more efficient features. Then, five classification meth-
ods (neural dynamic classifier (NDC), SVM, EPNN, k-nearest
neighbor (k-NN), and naive Bayes (NB)) were implemented
and achieved the accuracy of 93.3% for eyes-open, 90.0% for
eyes-closed, and 100% for CPT conditions by NDC.

Maniruzzaman et al. [8] also developed an ML-based
system for identifying ADHD children based on their EEG
signals. They used 121 subjects with 61 ADHD children
and 60 healthy children. They extracted various features
(morphological and time-domain) extracted from each EEG
channel and then, the optimal features were identified using
independent t-tests and least absolute shrinkage and selection
operator (LASSO)-based methods. They trained four ML-
based classifiers with LOOCV and achieved a 94.2% clas-
sification accuracy and 0.964 AUC by SVM.

Chow et al. [17] developed a novel ADHD detection tech-
nique based on Hjorth Mobility (HM) using EEG signals.
They recorded 32 EEG signals from 30 ADHD and healthy
children and extracted HM and theta beta ratio-based features.
An Independent t-test was implemented to determine the most
prominent channels using TBR and mobility (p¡0.05) and
chose 12 channels, which were fed into a logistic regression-
based classification model and obtained classification accuracy
of 79.2%, recall of 79.6%, and AUC of 0.885, respectively.

Tor et al. [7] proposed an automated ADHD detection
system using EEG signals. They recorded EEG signals using
10-20 international systems from 45 children with ADHD,
16 children with conduct disorder (CD), and 62 children
have both ADHD and CD. They decomposed EEG signals
using empirical mode decomposition (EMD) and discrete
wavelet transform (DWT) methods. Relative energy and au-
toregressive modeling coefficients were computed from EEG
signals. Eight types of non-linear features such as activity,
entropies, fractal dimension, Hurst exponent, largest Lyapunov
exponent, Lempel-Ziv complexity, Kolmogorov complexity,
and recurrence qualitative analysis were extracted from each
EEG signal. Then Z-score normalization was performed to
standardize the data after feature extraction and implement
an adaptive synthetic sampling (ADASYN)-based technique in
order to make balance the dataset. The most prominent features
were chosen using the SFS algorithm and significant features
were determined with p-value¡0.05 which were fed into five
ML-based classifiers (DT, k-NN, SVM, AB, and Bagged Tree)
with K=3, 10-fold CV.

III. MATERIALS AND METHODS

A. Proposed Methodology

The proposed ADHD-CT detection system methodology
is shown in Fig. 1. First, the raw EEG signal dataset was
recorded from ADHD-CT and healthy children. Second, we
preprocessed the extracted raw dataset, i.e., making it sta-
tionary and removing outliers. We implemented a p-th order
difference equation to make the EEG dataset stationary and
z-scores for removing outliers (|Z-score| ≤ 2). Third, five
entropy-based features such as Approx-Ent, Shan-Ent, Per-Ent,
Sam-Ent, and SVD-Ent were extracted from each preprocessed
EEG signal and then combined all features (40=5*8). The
next step is to split the experimental dataset into training
((N-1) children) and test sets (One children). We selected
the most relevant features using SFFS. Then, we developed
a prediction model for ADHD-CT detection based on SVM
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Fig. 1. Proposed Methodology of ADHD-CT detection system.

with four kernels (RBF, linear, polynomial, and sigmoid) and
tuned SVM hyperparameters. Using the test set, this trained
model was used to predict ADHD-CT and healthy children.

B. Dataset Acquisitions and EEG Recordings

We utilized a dataset, which was publicly available [18],
[19]. The dataset had two groups of subjects aged 6-10 years.
The first group was ADHD combined type (ADHD-CT),
which consisted of only 19 boys with an average age of 8.0±
0.3 years. The second group was the healthy children, which
consisted of 14 boys (male: 31 and female: 16) with an average
age of 8.10± 0.48 years. A psychiatrist and psychologist were
recruited to diagnose ADHD subjects. All subjects needed to
meet the criteria of ICT-10 Hyperkinetic disorder [20] or the
criteria of DSM-IV [4] of ADHD-CT. EEGs were recorded
with a sampling frequency of 256 Hz from 8 channels (Fp1,
Fp2, C3, C4, T3, T4, O1, and O2) based on 10-20 standard
international systems (See in Fig. 2 ). The data were collected
with resting-state conditions: (i) closed eyes (EC), and (ii)
opened eyes (EO). Before recording the EEG session, written
consent was obtained from each subject and his parents.

C. Preprocessing

In this work, raw recorded EEG datasets were preprocessed
using Python to reduce the computational demand and noise
effects on the signal. The raw dataset was filtered using a low
bandpass of 0.05Hz, and a high bandpass of 80 Hz. Moreover,
we used the p-th order difference equation to make stationary
signals. Furthermore, we also the outliers of each channel
using Z-score. We included the recordings whose values were
lies between (mean -2SD) and (mean + 2SD).

D. Feature Extraction

In this work, we have extracted four types of entropy-
based features from each signal. These four entropy-based fea-
tures were approximate-based entropy (Approx.-Ent), Shanon-
based entropy (Shan-Ent), Permutation-based entropy (Per-
Ent), Sample-based Entropy (Sam-Ent), and singular value
decomposition-based entropy (SVD-Ent). The calculation pro-
cedure for these features is described as follows:

Fig. 2. Position of channels/electrode used in this experiment.

1) Approximate Entropy: Approximate Entropy (Approx-
Ent): Approx-Ent is a method that is used to quantify the
regularity or predictability of a time series data [21]. The
formula for calculating ApEn is as follows:

Approx-Ent = φ(m+ 1, r)− φ (m, r) (1)

Here, φ(m + 1, r)is the conditional probability that two
similar sequences of length “m” remain close within a toler-
ance r; m is the pattern length; r is the tolerance or similarity
criterion. In this study, we set the value of r as 0.20*SD (x).

2) Shannon Entropy: Shannon Entropy is used to measure
the uncertainty in a dataset [22]. It is an information-based
entropy and is mathematically defined as:

Sha-Ent=
∑
i

p(xi) log2p(xi) (2)

3) Permutation Entropy: Permutation Entropy (Per-Ent) is
a measure used to quantify the complexity or randomness of
time series data. It is based on the concept of ordinal patterns,
which represent the orderings of values in a time series. Per-
Ent was first introduced in 2002 by Bandt and Pompe [23] as
a nonlinear complexity measure of time series data. Per-Ent
is mathematically defined as follows

Per-Ent (m)=-
∑

p(π)log2(π) (3)

Here, m is the length of the pattern; p is the probability of
each unique ordinal pattern, and the summation is taken over
all unique patterns. The value of Per-Ent ranged from 0 to
log2 (m!).
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4) Sample Entropy: Sam-Ent is a modification of Aprrox-
Ent that is used to assess the complexity of time-series
data [24] [Richman et al., 2000]. Sam-Ent is mathematically
defined as

Sam-Ent (x, m, r)=-log
C(m+ 1, r)

C(m, r)
(4)

Here, m represents the embedding dimension; r is the
tolerance point; C (m+1, r) and C (m, r) represent the no.
of emended vectors of length (m+1) and m.

5) SVD Entropy: SVD-Ent is also a method to assess the
complexity of time-series data based on its singular value
spectrum. It is also used as a dimension-reduction method.
The SVD-Ent of a signal x is defined as:

SVD-Ent=-
M∑
i=1

σ̄i log2 (σ̄i) (5)

Here, M represents the no. of singular values of matrix X;
and σi (i = 1, 2, .., M) are the ith normalized singular values
of Matrix X.

E. Feature Normalization

Min-Max normalization is a data preprocessing method
widely used to transform continuous data into a specific range
(0-1). It is computed using the following formula:

Z=
X−Xmin

Xmax −Xmin
(6)

Where, Xmax and Xmin are the maximum and the mini-
mum values of the feature, respectively. The value of Z ranged
from 0 to 1.

F. Feature Selection

Feature selection (FS) is a technique widely used in statis-
tics and machine learning to choose a subset of features to
build a predictive model. The FS is designed to increase
the performance of predictive models, reduce overfitting, and
enhance interpretability and understanding [1-3]. By selecting
the most discriminative and informative features, the FS-
based technique can improve the computational efficiency
and accuracy of predictive models. This study adopted the
SFS-based method [25] to select the most informative and
discriminative features for ADHD-CT, which were used in
SVM for discriminating ADHD-CT children from healthy
children.

G. Classification using SVM

Support vector machine (SVM) is one of the most popular
supervised techniques [26] that is widely used in various fields.
In this study, we used to determine an optimal line (called a
hyperplane) that can easily differentiate ADHD-CT children
from healthy children by solving the constraints:

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj) (7)

Subject to

n∑
i=1

yi
Tαi = 1, 0 ≤ αi ≤ C, i = 1, ..., n & ∀ i = 1, 2, 3, ..., n

(8)
The final discriminate function takes the following form:

f(x) =
n∑

i=1

αiK(xi, xj)+b (9)

In this study, we implemented SVM with four kernels such
as radial basis function (rbf), liner kernel, polynomial kernel,
and sigmoid kernel. The computational formula of these kernel
functions is defined as follows:

RBF Kernel : K(xi, xj) = exp(-γ∥xi-xj∥2); γ > 0 (10)

Linear Kernel : K(xi, xj) = xi.xj (11)

Polynomial Kernel : K(xi, xj) = (1 + xi. xi)
d
; d > 1 (12)

Sigmoid Kernel : K(xi, xj) = tanh (kxi.xj + c) (13)

In the case of this work, we applied the following steps:
Step 1: Divide the dataset into two phases: a training phase

and a testing phase. In each iteration, one subject is
used in the testing phase and the remaining (N-1)
subjects are used for the training phase.

Step 2: The hyperparameters of each kernel parameter with
cost (C) are tuned in the training phase. This involves
a grid search method to obtain the optimal values of
these parameters that yield the highest classification
accuracy.

Step 3: SVM model is trained using four kernels with
LOOCV on the training set.

Step 4: The trained SVM model is then utilized to predict
the class label (ADHD-CT vs. Healthy Children)
on the test set. Moreover, the probability of each
predicted class label.

Step 5: Repeat Step 1 to Step 4 into N times (here N=32).
Step 6: Finally, compute the classification accuracy.

IV. EXPERIMENTAL SET UP AND PERFORMANCE
EVALUATIONS METRICS

In this work, we performed all experimental analyses using
both the R-programming language and Python. The operating
system used Windows 10 version 21H1 (build 19043.1151) 64-
bit. In terms of hardware, an Intel (R) Core (TM) i5-10400
processor with 16 GB of RAM was used. We used the LOOCV
protocol during performing the SVM model. The efficiency of
the SVM model was assessed using accuracy (ACC) which is
computed using the following formula:
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Fig. 3. Raw and preprocessed dataset of ADHD-CT and healthy children: (a)-
(b) Raw EEG signals for ADHD-CT and healthy children; (c)-(d) preprocessed
datasets of ADHD-CT and healthy children.

Fig. 4. Boxplot of one raw and preprocessed dataset for ADHD-CT and
healthy children: (a)-(b) Raw EEG signals for ADHD-CT and healthy chil-
dren; (c)-(d) preprocessed datasets of ADHD-CT and healthy children.

ACC(%) =
TP + TN

TP+ TN+ FP + FN
× 100 (14)

Here, TP: True positive; TN: True negative; FN: False
positive (FP); and FN: False negative (FN).

V. RESULTS

A. Statistical Analysis of EEG Dataset

The recorded EEG signals of ADHD-CT healthy children
and healthy children are presented in Fig.3a and Fig.3b. Also,
the boxplot of recorded EEG signals for ADHD-CT children
and healthy children is illustrated in Fig.4a and Fig.4b. We
noticed that the recorded raw EEG signals were non-stationary
and contained outliers. In order to make EEG signals sta-
tionary, we used the 12th-order difference equation of the
recorded EEG dataset to make the stationary EEG dataset.
Moreover, we computed the z-score of each channel/signal,
and then, we removed the rows (outliers), which had at least
one z-score with an absolute value of more than 2. The
preprocessed dataset of one ADHD-CT and healthy children is
shown in Fig.3c-Fig.3d and Fig.4c-Fig.4d, respectively. These
preprocessed were used for feature extraction and classification
of ADHD-CT and healthy children.

TABLE I
SETS HYPERPARAMETERS DURING TRAINING SVM MODEL

Kernel Types Set values of hyper-parameters

Radial
Cost (C): 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000,
length-scale= (1 to 5), alpha= (0.04, 0.05, 0.06),
Sigma (σ): 0.00001, 0.0001, 0.001, 0.01, 0.1, 1

Linear Cost (C): 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000

Polynomial Cost (C): 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000,
Degree= 2, 3, 4

Sigmoid Cost (C): 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000

B. Feature Extraction

In this work, we extracted five entropy-based features from
each channel. As a result, 40 features (5x8) were extracted
from 8 channels, which were used in SFFS with the SVM
classification model for discriminating ADHD-CT children
from healthy children.

C. Performance of SVM -based Classification Model

In this work, we implemented a support vector machine
(SVM) for the classification of ADHD-CT children and
healthy children. There were several kernel functions, used
for training the SVM model. In this work, we used four
kernels: RBF, linear, polynomial, and sigmoid. We performed
three steps to conduct this experiment. First, the datasets
were partitioned into two phases: the training phase and the
test phase. We took one subject as the test phase and the
remaining (32-1) =31 subjects were taken as the training
phase. We selected the subset of relevant features using SFFS,
which were used to train the SVM-based model and optimized
the hyper-parameters of these four kernels on the basis of
classification accuracy during the training phase. During the
training model, we set various parameters (See in Table I) and
chose the hyper-parameters, at which points yield the highest
classification accuracy.

After optimizing hyper-parameters, one subject (test set)
was fed into a trained SVM model to predict ADHD-CT
children. These procedures were repeated in 32 trails and we
computed the predicted class label of each trail. Finally, we
compared these predicted class labels with actual class labels
and then computed the classification accuracy of SVM over
four kernels, which are presented in Table II.

TABLE II
CLASSIFICATION ACCURACY (IN %) OF SEVEN CLASSIFIERS OF

INDIVIDUAL TASK FOR OPTIMAL FEATURES

Kernel
Types

Conditions
Eyes Open Eyes Closed

RBF 93.75 81.25
Linear 71.88 65.62

Polynomial 96.87 87.50
Sigmoid 68.75 68.65

We observed that SVM with a polynomial (degree=4) kernel
provided the highest classification accuracy. Especially, SVM
with polynomial kernel obtained a classification accuracy of
96.87% and 87.50% for eyes open and eyes close condition.
Finally, it may be concluded that SVM with a polynomial
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kernel may have more capable of differentiating ADHD-CT
children and healthy children.

VI. CONCLUSIONS

This study developed an automated ADHD-CT detection
system to help physicians diagnose ADHD-CT children at
an early stage. Five entropy-based parameters were extracted
from EEG signals and the optimal discriminative features were
identified using the SFFS algorithm, which was fed to the
SVM algorithm. In contrast, SVM with a polynomial kernel
provided the highest classification accuracy of 96.87%. This
proposed system can be extended to identify at early stages of
ADHD with other overlapping coexisting disorders.
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Abstract—The use of point clouds as an imaging modality
has been rapidly growing, motivating research on compression
methods to enable efficient transmission and storage for many
applications. While compression standards relying on conven-
tional techniques such as planar projection and octree-based
representation have been standardized by MPEG, recent research
has demonstrated the potential of neural networks in achieving
better rate-distortion performance for point cloud geometry cod-
ing. Early attempts in learning-based point cloud coding mostly
relied on autoencoder architectures using dense convolutional
layers, but the majority of recent research has shifted towards
the use of sparse convolutions, which are applied only to occupied
positions rather than the entire space. Since points are usually
distributed on underlying surfaces rather than volumes, such
operations allow to reduce the computational complexity required
to compress and decompress point clouds. Moreover, recent
solutions also achieve better compression efficiency, allocating
fewer bits at similar levels of geometric distortion. However, it is
not clear to which extent this gain in performance is due to the
use of sparse convolutions, if any at all, since the architecture
of the model is often modified. In this paper, we conduct an
evaluation of the effect of replacing dense convolutions with
sparse convolutions on the rate-distortion performance of the
JPEG Pleno Point Cloud Verification Model. Results show that
the use of sparse convolutions allows for an average BD-rate
reduction of approximately 9% for both D1 and D2 PSNR
metrics based on similar training procedures, with an even bigger
reduction in point clouds featuring reduced point density.

Index Terms—Point cloud compression, sparse convolutions

I. INTRODUCTION

Immersive imaging modalities have grown in popularity
in recent years due to their potential to offer more natural
ways to interact with visual content. Applications such as
virtual and augmented reality have become increasingly ac-
cessible and widely employed in numerous industries such
as entertainment, education, training, and healthcare. These
modalities enable users to explore and interact with virtual
landscapes and objects in ways previously impossible, result-
ing in more impactful experiences. Because they allow for
the correct collection and representation of 3D geometry in a
scene, point clouds are a key component of many immersive
imaging modalities. Point clouds provide a detailed and high-
fidelity representation of the geometry that may be utilized

This work was supported by the Swiss National Foundation for Scientific
Research (SNSF) under the grant number 200020 207918.

for a range of applications such as autonomous navigation
and visualization, by expressing the surface of objects as a
collection of 3D points in space.

The vast amount of data needed to represent point clouds is
however a major drawback for their use in mainstream appli-
cations. For that reason, effective solutions for compression
have been heavily researched in recent years. Such efforts
have led to the standardisation of two compression algorithms
by MPEG, namely geometry-based point cloud compression
(G-PCC) [1] and video-based point cloud compression (V-
PCC) [2]. While the latter obtain planar projections of both
point cloud attributes and geometry as color, depth, as well as
occupancy maps and compresses them with conventional video
codecs, G-PCC uses an octree to encode voxel occupancy
and encodes color with either a region-adaptive hierarchical
transform (RAHT) or a lifting transform.

Despite the usefulness demonstrated by conventional tech-
niques, deep learning is receiving increased attention as an
alternative approach for point cloud compression. Learning-
based solutions have displayed even better rate-distortion per-
formance for geometry data when compared to conventional
techniques, allowing for better compression efficiency while
maintaining a similar reconstruction quality. Early works in
this direction were inspired by architectures previously used
for the compression of 2D images, which relied on an au-
toencoder composed of convolutional layers. The input tensor
is downsampled multiple times at the encoder, entropy coded
using a probability distribution learned during training, and
finally upsampled back to the original resolution at the decoder
side. Initial efforts [3], [4] to adapt this algorithm for point
clouds represented blocks as dense occupancy maps where all
spatial positions are processed by dense 3D convolutions that
operate similarly to their 2D counterparts.

However, these approaches fail to take into consideration
the nature of most point clouds, which contain points sampled
from an underlying surface and therefore occupy a small
fraction of the space. Sparse convolutions, on the other hand,
allow to better take advantage of these characteristics. In
particular, sparse convolutions convolve a 3D kernel over a
set of coordinates and apply the weights only at the occupied
voxel positions from the input set of coordinates, differently
from dense convolutions that convolve the kernel over all

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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indices of a three-dimensional grid and also consider all input
positions to produce the input value. Sparse convolutions were
leveraged in later compression methods [5], showing not only
reduced computational complexity, but also increased rate-
distortion performance, and have replaced dense convolutions
on recent learning-based compression methods [6], [7].

The majority of recently proposed methods also include
modifications to the architecture being used by previous mod-
els based on dense convolutions. Therefore, despite the rapid
adoption of sparse convolutions as a de facto standard for
learning-based voxelized point cloud compression, it is not
possible to conclude to which extent the obtained improve-
ments in rate-distortion performance are due to the use of
sparse convolutions. The goal of this paper is therefore to
assess the isolated impact on compression performance of re-
placing dense convolutions by these operations. The geometry-
only pipeline of the JPEG Pleno Point Cloud verification
model [8] is used as a baseline, and the evaluation is conducted
using a test set composed of point clouds with different
sparsity levels.

While early designs of the verification model also contained
joint coding for both geometry and color, recent versions use
a separate method for color coding. Moreover, the state of the
art contains a much larger number of compression algorithms
based both on dense and sparse convolutions for geometry-
only coding than for color coding. For those reasons, sparse
convolutions are evaluated only for geometry coding in this
paper. Since the architecture of the baseline model is in many
ways similar to a significant number of works in the state of
the art [3]–[5], it is also considered that the results presented
in this paper could be similar if other compression methods
based on autoencoders were used.

II. RELATED WORK

Early works on point cloud geometry compression used an
octree representation as data structure rather than a list of coor-
dinates [9]. The octree became later prevalent with the addition
of similar compression algorithms in widespread open-source
libraries such as the Point Cloud Library (PCL) [10]. Later
works explored pruning the octree, and then representing the
leaf nodes as triangular primitives rather than singular points
[11]. Both techniques were adopted in the geometry coding
module of the G-PCC standard [1]. Other methods aimed to
take advantage of the progress made in video compression
during the last decades, and projected points onto multiple
planes to represent point cloud geometry as two-dimensional
maps. Such methods were later explored by the V-PCC stan-
dard [2], achieving high rate-distortion performance for dense
point clouds, but struggling to effectively compress models
with smaller point density.

Point cloud compression algorithms using neural networks
were later introduced, with the first works [3], [4] mainly
adapting a previous method designed for image compression
[12] for three-dimensional representation. Several additional
techniques were later studied [13] using previous works as
baseline, such as entropy modeling using a hyperprior, adding
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Fig. 1: Block diagram of the model using sparse convolutions.
SConv denominates regular sparse convolutions and GSConv
denominate generative sparse transposed convolutions. k de-
nominates kernel size, f the number of features and s the
convolution stride. The residual block was implemented with
the same parameters as [8]. Scaling consists of the division
of the latent features by the quantization step q, provided as
an encoding parameter and added to the bitstream. Blocks
highlighted in gray produce compressed representation added
to the bitstream.

residual convolutional layers to the encoder and decoder,
employing an adaptive threshold selection to translate output
occupancy probability into voxels, as well as a sequential
training method to allow for coding at different bitrates at re-
duced training time. Similar techniques were also employed by
other authors [14], with results surpassing the rate-distortion
performance by G-PCC for dense point cloud models. An
autoregressive entropy coding model was also explored with
comparable architecture [15], producing even better results
that outperformed V-PCC for the evaluated test set. Other
techniques, such as block prediction [16] and residual coding
[17] explored further extension of similar techniques. Re-
cently, the JPEG standardisation committee launched a call
for proposals for learning-based point cloud coding, and a
compression method based on dense convolutions was selected
as the starting point known by the term verification model [8].

Sparse convolutions were first adopted [5] with an architec-
ture similar to the same authors’ previous work [14], with the
addition of classification and pruning layers for progressive
decoding. Another method, denominated as SparsePCGCv1
[6], improved upon the architecture by exploiting cross-
scale and same-scale redundancies, allowing for both lossless
and lossy compression. Moreover, GRASP-Net [7] proposed
a heterogeneous architecture combining sparse convolutions
with point-based MLP layers to recover fine details during
decoding.

III. EVALUATION CONDITIONS

The evaluated compression model is created by replacing
all dense convolutions from the baseline model with sparse
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Fig. 2: Histogram of sparsity values of the training set

convolutions, and its diagram block can be observed in Fig-
ure 1. The framework used in [8] includes downsampling prior
to compression as a strategy to achieve lower bitrates, with
learning-based upsampling being applied as a post-processing
method. The present evaluation focuses only on the end-to-end
autoencoder architecture, therefore setting the sampling factor
to 1 and ignoring the advanced block upsampling network.

Prior to compression, the input point cloud is first par-
titioned into blocks. In the baseline model, the blocks are
represented as dense tensors x of dimension K×K×K×N ,
where K corresponds to the block size and N is the number
of channels, which is set to 1 for geometry-only coding. The
value at a given coordinate of x is set to 1 if the coordinate
is present at the input block and to 0 otherwise. On the
other hand, the sparse tensors used in the evaluated model are
represented by a coordinate tensor xc of dimensions Ni × 3
set to the coordinates of the input point cloud block, and by a
feature tensor xf of size Ni × 1 with all values set to 1, with
Ni being the number of points in the input block.

The output of the analysis transform is a tensor y with its
coordinates yc being equivalent to xc downsampled three times
by a factor of 2. While the features yf are encoded to the bit-
stream in a lossy manner by the range coding module and serve
to build the input of the synthesis transform ŷ, the coordinates
yc are losslessly encoder and retrieved at the decoder side. The
proposed compression algorithm downsamples the input point
cloud geometry prior to block partition by a factor of 8 and
compresses it using the lossless settings of the G-PCC codec.
During decompression, the G-PCC bitstream is decoded and
the obtained coordinates are partitioned into blocks in order
to obtain ŷc, which is equivalent to yc.

The synthesis transform takes ŷ as input and passes it
through three upsampling layers and residual blocks prior to a
final sparse convolutional layer that produces a reconstructed
tensor x̂. Generative layers are employed when upsampling in
order to generate new points, which, with kernel size 2, creates
8 output coordinates for each input coordinate corresponding
to all possible positions that could have generated the point at
the corresponding downsampling layer at the analysis trans-
form.

As a result, the decoded tensor x̂ usually contains many

(a) Annibal from CfP original
Median 5-NN distance = 1.17

(b) kinfudesk from CfP supplemental
Median 5-NN distance = 2.26

(c) Lausanne from swissSURFACE3D — Median 5-NN distance = 3.36

Fig. 3: Point clouds from test set

additional points when compared to the input x. Similarly to
the baseline model, the coordinates x̂c are sorted according to
the values of x̂f , which represent the estimated probability of
occupancy for each coordinate. The decoded point cloud block
will then contain the No points with the highest occupancy
probability, with No being defined during compression as the
value that maximizes a similarity metric between decoded and
input block. During this experiment, the D1 PSNR metric is
employed for this purpose.

This model is trained end-to-end to minimize a loss function
equivalent to a weighted sum between the estimated bitrate
of the compressed features and the distortion between the
decoded point cloud block and the input. The rate R is
estimated by the sum between the entropy of ŷf and the
entropy of ẑf , while the estimated distortion D is given by
the sparse focal loss between x̂ and x. The latter term is
represented in Equation 1, where x̂fj and x̂cj correspond to
the jth row from x̂f and x̂c, respectively.

FL =

{
−α(1− x̂fj )

γ log(x̂fj ), if x̂cj ∈ xc

−(1− α)x̂γ
fj
log(1− x̂fj ), if x̂cj ̸∈ xc

(1)

The hyperparameter α can be configured to control the
weight given to unoccupied voxels relative to occupied ones,
while assigning a higher value of γ increases the importance
given to voxels difficult to classify. The final loss value is
given by L = λR+D, with the hyperparameter λ setting the
trade-off between rate and distortion.

The sequential procedure proposed by [13] was used to
train the evaluated models in order to obtain different quality
levels. In particular, the model with the lowest λ is first
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Fig. 4: Rate-distortion plots

trained from scratch, and the obtained weights are used
to initialize the training for higher λ values. The baseline
model was trained with λ values following the sequence
{0.00025, 0.0005, 0.001, 0.002, 0.004, 0.008}. For the model
with sparse convolutions, higher λ values had to be selected to
allow for similar bitrates, since the focal loss is computed only
on voxels in the neighborhoods of the input points rather than
the entire block, given how voxels are generated at the decoder.
Such voxels are harder to classify than the vastly empty
zones of dense tensors, driving up the relative importance of
the D term in the final loss value. Therefore, the sequence
{0.0025, 0.005, 0.01, 0.025, 0.05} was adopted.

Moreover, a patience parameter P was used to detect
convergence of the model during training: if the loss function
on the validation set does not decrease after P epochs, then
training is stopped and the weights yielding the lowest loss
value are selected. Both the baseline and the evaluated models
were trained with P = 10 for all λ values. An additional
model with sparse convolutions was trained using a learning
rate scheduler, which decreased the learning rate by a factor
of 10 whenever the validation loss was not reduced after 10
epochs. In this case, a patience value of P = 25 was set. All
compression models are coded in PyTorch and were trained
with an initial learning rate of 10−4 using the Adam optimizer,
with values of α = 0.7 and γ = 2 in the focal loss.

IV. TRAINING AND TESTING DATASETS

In order to train both the baseline and the evaluated com-
pression models, the training and validation datasets presented
in [8] were used, containing 35861 blocks of size 64×64×64
obtained from 24 point clouds for training and 3822 blocks
from 4 point clouds for validation. Recent works indicate
that the performance of compression models depends heavily
on the sparsity of the point clouds being compressed. One
possible reason for this difference in performance is the
distribution of the density values of the training set. In order to
evaluate the impact of this factor, a sparsity metric is computed
for each block in the training set by measuring the average
distance from each point to its 5 nearest neighbors. The median
value across all points is selected, denominated as the median
5-NN distance.

The distribution of this metric for the training set is illus-
trated in Figure 2. The majority of the point cloud blocks are
highly dense, with more than 68% having a median 5-NN
distance under 1.25. On the opposite side, less than 6% of the
training set is between 2 and 3 in the histogram, and no block
with sparsity higher than 3 was employed in the training set.
Although the use of a more diverse training set would probably
improve the performance of the model at higher sparsity levels,
the same dataset was kept to ensure a fair comparison.

In order to test both the baseline and the evaluated com-
pression models, the original test set from the JPEG Pleno
Call for Proposals on Point Cloud Coding (CfP) [18] was
used. The 20 point clouds were sampled with high density
from meshes generated from the acquisition of real-world
objects, all of them presenting a median 5-NN distance under
1.25. Additionally, the five point clouds from the supplemental
dataset were employed, some of them presenting considerably
smaller point densities. Finally, two point clouds obtained from
swissSURFACE3D [19] were also included in the test set. This
dataset was obtained with airborne LiDAR, with the entire
set currently covering more than half of Switzerland. Two
geographical regions were selected and the coordinates were
voxelized with precision of 13 bits, leading to median 5-NN
distances larger than 3. The entire test dataset contained a total
of 27 point clouds, three examples of which are presented in
Figure 3.

The test set was compressed and decompressed with the
baseline model and the two versions of the evaluated model,
using a block size of 128 and a latent quantization step of
1. They were additionally compressed using G-PCC software
version 21 with lossless settings for comparison. Both point-
to-point PSNR (D1 PSNR) and point-to-plane (D2 PSNR)
metrics were computed on the decompressed models.

V. RESULTS AND DISCUSSION

The metric values for the evaluated and baseline models
were plotted against their bitrates, with a dashed vertical line
indicating the bitrate for lossless encoding with G-PCC. The
plots for the point clouds illustrated in Figure 3 are presented
in Figure 4. For the Annibal point cloud, modest gains in
performance from the use of sparse convolutions are observed
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Fig. 5: BD-Rate reductions for D1 PSNR and D2 PSNR

across the evaluated range. Also, a difference in performance
is observed when training the model at a higher patience
value, with longer training leading to higher quality. The plots
for kinfudesk indicate that even larger gains can be obtained
for sparser point clouds. Moreover, it is also observed that
the difference between different patience levels is reduced,
possibly due to the lack of point cloud blocks with similar
sparsity levels in the training set. It is also observed that
the highest rate of the plot is significantly above the lossless
line. Finally, the results obtained for Lausanne demonstrate
that the model with sparse convolutions outperforms again
the baseline, with a higher difference in performance for
Annibal, but lower than for kinfudesk. Moreover, performance
between models trained with P = 10 and P = 25 is again
very similar, with even a slight advantage of the former at
lower bitrates. Since this point cloud is even sparser than
kinfudesk, these findings reveal that decreasing point density
does not necessarily lead to an increased advantage of the
sparse convolutions.

In order to better evaluate the effect of point cloud sparsity
on the rate-distortion performance, the BD-Rate between the
evaluated model trained with P = 10 and the baseline was
obtained for each point cloud, ignoring quality levels above
the lossless rate for G-PCC. The evaluated model achieved
an average bitrate saving of approximately 9%. A consistent
increase in performance from the use of sparse convolutions
is observed while using the exact same training strategy.

The BD-Rate results were plotted against the median 5-NN
distance of each point cloud and are displayed in Figure 5a, the
color of each point of the plot indicating the original source of
each point cloud. The use of sparse convolutions allowed for
lower bitrates for the majority of test set. All point clouds
of the original test set of the CfP are grouped at the left
of the plot, achieving a BD-rate difference varying between
3% and -15%. Since BD-rate values can vary at a range

of approximately 18 percentage points at almost identical
point density levels, these results show that sparsity is not
the only factor that determines the performance of sparse
convolutions. However, the analysis of the CfP supplemental
set indicates that sparsity is indeed among the most influential
factors, with a high correlation between BD-Rate reduction
and median 5-NN distance. In particular, the point exhibiting
the highest rate reduction is the most sparse model from this
set, achieving more than 36 % savings for the D1 PSNR metric
at 2.9 median 5-NN distance. While this strong correlation
would suggest that even higher savings should be possible on
the sparser models from swissSURFACE3D, this trend was
not observed, with overall rate difference remaining between
−17% and -27%. Such results indicate that other factors
such as homogeneity or voxelization precision can affect the
compression performance as well.

The BD-Rate between the evaluated model trained with
P = 25 and the baseline model was also computed for the
entire set. The difference between these values and those
from the previous comparison is presented in Figure 5b. It
is observed that including a mechanism for progressively
decreasing the learning rate and waiting more epochs prior to
stop of the training induced an increase in performance for the
majority of the tested point clouds. Indeed, the model trained
with P = 25 achieved an average BD-Rate difference of
approximately -12.5% when compared to the baseline. In par-
ticular, point clouds with higher density were more favored by
the higher patience value. However, a longer training process
was slightly detrimental to the efficiency of the compression of
sparser point cloud models, likely because it caused the neural
network to specialize for the sparsity values better represented
in the training set. Since blocks with a median 5-NN distance
higher than 2 account for only a small portion of the training
data, higher patience values are not beneficial. Rather than
encouraging earlier stops of the training process, these results
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indicate the importance of including point cloud models with
a wider range of sparsity values in the training set.

Naturally, the obtained results depend also on the evaluation
conditions. For instance, the lack of sparse point cloud blocks
in the training set probably hinders the performance of both
the baseline and the evaluated model. As a matter of fact, no
blocks with the same sparsity as kinfubooks, nor any models
from swissSURFACE3D were used for the optimization of
the models. Yet, the models are still capable of encoding
such point clouds at rates below lossless with acceptable
quality. While these results show the generalization capacity
of the neural network to unseen examples, using a more
diverse training set would probably increase the rate-distortion
performance of such learning-based methods.

Aside from the rate reduction in sparse convolutions, a
reduction in computational complexity is also inherently ob-
tained since the convolution operations need to compute
at fewer spatial locations. While this feature is already an
advantage in itself, it would also allow the use of larger
blocks both during training and testing. Indeed, one major
limitation of using dense convolutions is their memory usage,
which restricts the size of the point cloud blocks that can
feed the neural network. While the point cloud size used
by compression models based on sparse convolutions is not
limitless, higher dimensions could certainly be used due to
their smaller memory footprint, likely enabling better perfor-
mance as previously demonstrated for models using dense
convolutions.

Moreover, the hyperparameters for the loss function selected
for the training of both the baseline and evaluated model were
established by [8], considering only the characteristics of dense
convolutions. In particular, the α parameter is set to 0.7 in
order to give a higher weight on the correct classification of
occupied voxels due to the fact that most spatial positions of
the dense input tensor x are empty. Giving instead the same
weight to both occupied and empty voxels would skew the
network into producing lower probabilities for the occupancy
of most positions due to class imbalance. However, the de-
coder of the evaluated model produces sparse tensors with
coordinates only in the neighborhoods of occupied voxels,
not considering regions that are totally empty. Therefore, the
optimal α value is likely different from that of the baseline,
and adapting this hyperparameter could lead to even better
results. These experiments were considered out of the scope
of this paper and are deferred to future work.

VI. CONCLUSION

In this paper, an evaluation of the performance of sparse
convolutions for point cloud geometry compression is con-
ducted by replacing the dense convolutions of an existing
compression model with sparse layers, with minimal additional
changes. Aside from the intrinsic complexity reduction, an
increase in the rate-distortion performance is also observed,
with an average BD-Rate reduction of approximately 9%
in the evaluated test set. An improved training process also
allowed to increase the rate savings to nearly 12.5%. While

the improvement of rate-distortion performance is observed
for the majority of the point clouds, the sparse convolutions
are particularly effective for test models with lower density,
with rate savings going up to 35%. The fact that such results
were obtained without major adaptations indicates that sparse
convolutions are more suitable for point cloud compression in
most cases, corroborating the recent shift in research trends.
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Abstract—3D Layered displays are a type of 3D display that
stacks LCD panels to reproduce different viewpoints of a scene
without glasses. However, these displays fail at reproducing high-
parallax scenes, thereby limiting their Field of View (FoV).
To enhance the FoV, various strategies have been employed,
including the multiplexing of distinct sets of layered images, i.e.
frames. Despite achieving improved quality, this multiplexing
method let no control to adjust the quality of the frames
depending on its application. By introducing distinct weights
for each frame during the optimization process, we expect to
improve the frames’ optimization based on the input data,
and thus, the quality of the display. This weighted-multiplexing
method motivates us to investigate the use of a first weighted-
multiplexing method to study exhaustively the impact of the
weights on the multiplexing optimization process. The proposed
method involves viewpoint-dependent time-multiplexing where
each frame is tailored to optimize a specific viewing region within
the FoV. To define the weights of each frame, three weighted
approaches are then proposed. Three objective evaluations and
one subjective comparison are presented in the study.

Index Terms—3D Layered Displays, Time-Multiplexing,
Viewpoint-Dependent, Light Field, Virtual Reality

I. INTRODUCTION

In recent years, virtual reality and 3D videos regained
popularity primarily driven by the Metaverse [1] concept in
commercial applications of multinational corporations. How-
ever, these commercial applications rely on the immersive
experience provided by current 3D displays, which use is
limited by the cyber-sickness effect caused by the lack of
depth cues. Notably, head-mounted displays [2] provide a great
immersive experience, but they suffer from their discomfort
and lack adequate eye accommodation and eye vergence.
Therefore, holographic displays [2]–[6] have emerged as a
potential solution, aiming to reproject multiple glasses-free
viewpoints with better depth cues at an expensive cost.

3D layered display [7]–[9] represents an affordable alterna-
tive that enables a glasses-free 3D viewing experience. These
displays consist of a backlight and a stack of n display
panels, typically LCD panels. The emitted light from the
backlight traverses through each panel, and its final color
and intensity are determined by the intersected pixels present
in the display panels. Through precise control of the pixels’
colors on each panel, multiple viewpoints of a scene can be

Armand Losfeld is funded by the Ecole Polytechnique de Bruxelles (EPB)
from the Université Libre de Bruxelles (ULB).

Frame Frame Frame 

Viewpoint-dependent Time-Multiplexing

… …

Fig. 1. Our Viewpoint-dependent Time-Multiplexing method uses different
weight distributions depending on the frame of the multiplexing.

reproduced. Consequently, the pixel values for the layers are
determined by solving an optimization problem. An iterative
factorization method [7] is used in the case of an attenuation-
based layered display where each LCD panel is surrounded
by two polarizing filters. For a polarization-based display,
where only two polarization filters are used, an iterative
projection method [8] is commonly used. Recently, a quasi-
Newton method [10] was used for both display designs. In this
paper, the quasi-Newton method and only polarization-based
displays [8] are considered since both display types always
lead to comparable conclusions [10] though polarization-
based displays give slightly superior outcomes compared to
attenuation-based ones.

Compared to other displays, layered displays generally
exhibit a limited Field of View (FoV) which is related to the
amount of parallax [7], [11]–[13] present in the target scene.
To address this limitation, a weighted method [14]–[16] was
proposed to dynamically adjust the narrow light field [17],
[18], i.e. a set of narrowly rendered viewpoints, based on
the introduction of weights during the optimization process
allowing the use of only a subset of the input light field.

Alternatively, time-multiplexing [7], [10] was proposed. It
formulates the problem as the optimization of NF different
sets of multi-layer images, i.e. NF frames, that are displayed
simultaneously. Although the quality increases, there is no
control over the frames’ optimization process and a more
sophisticated multiplexing process based on the light field

979-8-3503-4218-5/23/$31.00 © 2023 European Union
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information might outperform the conventional approach.
We investigate the potential of such a method by exploring

the impact of the weights on the multiplexing process. For the
study, we propose a first weighted-multiplexing method, called
Viewpoint-dependent Time-Multiplexing, which uses distinct
weights for each frame to force each on reproducing in high
quality a distinct subset of the light field, cf. Fig. 1. To define
the weights of each frame, three weighted approaches based on
the light field spatial resolution and the frame count are pro-
posed. Two datasets are used to evaluate the three approaches,
identify the optimal weighted parameterization, and study
the differences compared to the conventional multiplexing
method. Even if no significant improvements are expected
due to the frame averaging process of the multiplexing, the
exhaustive study of the proposed method will help define a
more sophisticated weighted-multiplexing method.

II. PROPOSED METHOD

A. Layered Display Model

The light field formalism [17], [18] is commonly employed
to describe 3D layered displays, cf. Fig. 2, in particular the
two-planes parametrization [17]. This formalism provides a
framework for representing the radiance of all light rays
captured by two distinct planes. The first plane (u, v) is the
camera plane while the second plane (s, t) is the focal plane.
By considering one of the LCD layers as the focal plane and
placing the camera plane at an arbitrary distance from the
display, the light rays of a layered display of NL layers are
expressed in the light field formalism as follows:

l̃(u, v, s, t) = (gNL
◦ · · · ◦ g1)(s′, t′; l̃0) (1)

where gi(s
′, t′;x) is the response of the pixel (s′, t′) in the

layer i to the input x, l̃0 is the backlight intensity, and (s′, t′)
are defined as the intersection of the light ray with the layer
i. Time-multiplexing is then introduced as an average of NF

different sets of multi-layer images displayed simultaneously.

l̃(u, v, s, t) =
1

NF

NF∑
f=1

l̃f (u, v, s, t) (2)

where l̃f is the reproduced light field of the frame f . More
generally for the rest of the paper, the notation ·f will refer
to an element · of the frame f .

By denoting the target light field with l(u, v, s, t), the prob-
lem of computing the frames displayed for the 3D reproduction
can be formulated as an optimization problem where we
minimize a cost function, such as the mean-squared norm,
between the reproduced and target light fields. Following the
approach in [14]–[16], we introduce the weights wu,v within
the cost function C. However, our method uses distinct weights
for each frame of the time-multiplexing process, i.e. wf

u,v .
Indeed, with this strategy, each frame can be forced to be
optimized on a subset of the input light field, corresponding
to particular viewpoints of the scene. In this section, only the
incorporation of the weights in the optimization problem is

(a) Frame  (b) Frame  

Fig. 2. An example of the Centered-Gaussian approach used for two
viewpoint-dependent weighted frames. (a) For the frame fu = 1, the weight
distribution is centered on the left side of the FoV and is narrow. (b) For an
arbitrary horizontal frame fu, the distribution is displaced on the right. Here,
the distribution is also flatter since its position is at the FoV center, and thus,
the weight for the view u = 1 is much less than it was for the frame fu = 1.

presented, the weights will be defined in the next section. The
cost function is

C =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
f

wf
u,v

(
l̃f (u, v, s, t)− l(u, v, s, t)

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (3)

For polarization-based displays, the composition of the gi
functions [8] is then defined by:

(gNL
◦ · · · ◦ g1)(s′, t′; I) = I sin2

(
NL∑
i=1

θi(s
′, t′)

)
(4)

where θi(s
′, t′) denotes the light wave phase shifts of the

pixel (s′, t′) of the layer i, and I the initial intensity. Since
LCD layers have a fixed pixel number NP , the cost in (3) can
be expressed in a matrix formalism similarly as in [10]:

C =

∣∣∣∣∣
∣∣∣∣∣∑
u,v

h(Θ)

∣∣∣∣∣
∣∣∣∣∣
2

h(Θ) = Eu,vϕ(Au,vΘ)− wu,vLu,v (5)

where wu,v is a scalar obtained by summing the weights
of the multiplexed frames for the view (u, v). The weighted
multiplexing matrix Eu,v , of dimensions NP × (NF · NP ),
and the orthographic projection matrix Au,v , of dimensions
(NF ·NP )×(NF ·NL ·NP ), are in bold. The vector Θ contains
NF ·NL ·NP elements and represents the phase shifts of all
pixels’ layers of all multiplexed frames. The target view vector
Lu,v for view (u, v) has size NP . The element-wise operator
ϕ is defined, for polarization-based displays, as ϕ = sin2 (·).
The weighted multiplexing matrix Eu,v is used to sum the
frames and scaled each of them with a factor wf

u,v/NF .
The gradient of C is therefore given by:

∇C = 2
∑
u,v

(
AT

u,vdiag

(
d

dθ
ϕ(Au,vΘ)

)
ET

u,vh(Θ)

)
(6)
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Fig. 3. Experiment 1: Difference of the mean PSNR of our method with the conventional method in the function of the frame number NF (up to 6 frames),
the three weighted approaches, and the parameter β. For the weighted approaches, the first five frames are only horizontal frames (i.e. NFv = 1) while the
sixth frame is divided into 3 horizontal and 2 vertical frames. The iteration number of the L-BFGS algorithm was set to 300 and the parameter c to 100/2π.

As in [10], a solution is found by giving the cost function
and its gradient to the L-BFGS algorithm [19] with the same
transformation variable, i.e. x = π

2 sin2(y).

B. Viewpoint-dependency with multiplexing

The effectiveness of our viewpoint-dependent time-
multiplexing method critically relies on the appropriate selec-
tion of weights, as random choices yield a wrong optimization.
Moreover, there exists an infinite number of choices for
partitioning the Field of View (FoV) into distinct viewing
zones depending on the number of frames and the light field
spatial resolution. In this section, we present three solutions:
one naive and two alternative approaches which take into
account the small amount of information on the extremity of
the light field.

The Uniform-Gaussian approach is the naive strategy. It
divides equally the FoV into NF viewing zones with two
parameters: the horizontal frame number NFu and the vertical
one NFv

with NF = NFu
NFv

. Gaussian distributions are then
positioned at the center of each viewing zone to determine
the weights assigned to each view (u, v) of each frame f .
Also, the amplitude of the distributions depends on the light
field resolution (i.e. the number of views), the frame number,
and the amplitude parameter c. For every frame, the weights
assigned to each viewpoint (u, v) are given by:

wf
u,v = αeλ

fu
u +λfv

v λfx
x = − (x− µfx)2

2(σfx)2
α = c

UV

σfuσfv
(7)

where UV is the spatial resolution of the light field, x is
either u or v, and c is the amplitude parameter. While µfx

only depends on the frame number NFx
, the frame fx, and X

the resolution of the coordinate x (e.g. for u, X = U ); σfx

also depends on the weight-control parameter β.

σfx = β
X − 1

4 + 2NFx

µfx =
X(1 + fx)

(2 +NFx
)

(8)

The Centered-Gaussian is the second approach. It intro-
duces a variable width for the Gaussian distributions, which
is based on the proximity of the zone center with the borders.
If the center is near one of the borders of the light field,
then the distribution is narrower. Conversely, if the center
is located at the center of the FoV, the distribution becomes
flatter. From (8), σfx becomes

σfx = β ·
{

1.0 + µfx if µfx ≤ X
2

1.0 +X − µfx if not.
(9)

The Bordered-Gaussian is the third approach and is de-
fined as the opposite of the second approach. The distributions
are narrow at the center of the FoV but flatter at the FoV
extremities.

σfx = β

(
1.0 +

∣∣∣∣X2 − µfx

∣∣∣∣) (10)

For the Centered-Gaussian and Bordered-Gaussian strate-
gies, an initial width of 1.0 was introduced to avoid zero width
when µfx approaches 0, X , or X/2.

For all the proposed approaches, the weights wf
u,v are

appropriately scaled to ensure that their sum remains similar,
i.e ∀f

∑
u,v w

f
u,v is the same. Without this condition, some

frames could contribute more than others to the light field
reproduction and thus yield wrong results.

III. EXPERIMENTS AND RESULTS

Three qualitative experiments and one subjective evaluation
are presented in this research. For each qualitative experiment,
the Peak Signal-to-Noise Ratio (PSNR) metric was used to
assess the quality. The first experiment studies the efficiency
of our method under various parameter configurations, and
the second and third experiments study the method’s impact
on a wider FoV. Lastly, subjective comparisons are presented
to evaluate the perceptual aspect of the proposed method. For
all experiments, the maximal number of frames is set to six
because using more frames highly increases the chance of
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TABLE I
EXPERIMENT 2: COMPARISON BETWEEN THE CONVENTIONAL MULTIPLEXING AND OUR VIEWPOINT-DEPENDENT MULTIPLEXING ON A WIDE FOV FOR

DIFFERENT PARAMETRIZATIONS. IN ORANGE AND IN BLUE , THE WORST AND BEST RESULTS IN A ROW; IN YELLOW , THE RESULT BEING COMPARED.

Method Conventional Uniform-Gaussian Centered-Gaussian Bordered-Gaussian
Frame number 1 (a) 6 (b) 10 (c) 6 6 6
Thickness β 1.557 3.681 5.097 1.557 3.681 5.097 1.557 3.681 5.097
Min PSNR (dB) 25.236 27.613 28.180 22.638 25.086 26.335 25.403 27.546 27.731 23.615 26.171 26.926
Max PSNR (dB) 31.601 34.418 35.262 35.167 36.613 35.882 36.208 34.994 34.766 34.782 34.409 34.730
Mean PSNR (dB) 28.594 31.519 32.124 27.327 30.099 31.046 30.325 31.692 31.692 28.424 30.931 31.406
Diff w/ (a) (dB) 0 2.924 3.530 −1.266 1.505 2.452 1.731 3.098 3.098 −0.170 2.337 2.812
Diff w/ (b) (dB) −2.924 0 0.605 −4.191 −1.419 −0.472 −1.193 0.173 0.173 −3.095 −0.587 −0.112
Diff w/ (c) (dB) −3.530 −0.605 0 −4.796 −2.024 −1.077 −1.798 −0.431 −0.431 −3.700 −1.193 −0.717

flicker effects due to LCD hardware limitations. But in the
second and fourth experiments, the result of the conventional
method utilizing ten frames is presented for completeness.

The software implementation uses C++17 and the open-
source libraries OpenCV [20], Eigen [21], and LBFGSpp [22].
The program was executed on a Windows 10 operating system
equipped with an Intel i9 − 10920X processor running at
3.50 GHz. For all experiments, the iteration number of the
L-BFGS algorithm was set to 300 to assure its convergence,
and the parameter c was set to 100/2π to avoid divergent
results due to single-floating numerical precision.

Two datasets were used: Dice [23] and SauceDino [24].
The Dice dataset [23] has 7 × 7 orthographic viewpoints of
size 512 × 384 for an FoV of 10◦ and was used in the
first experiment. The dataset is composed of a texture-less
background and 5 dice of different colors and depths which
result in a reproduction of high quality (≈ 30 dB) without
time-multiplexing. The SauceDino has 15 × 15 perspective
viewpoints of size 512 × 300 placed at 4 meters from the
wall and focused on the dinosaur’s body for an FoV of 6◦.
Three scanned objects from the collection Scanned Objects by
Google Research [25], two user-modeled objects, and a brick
texture background compose the scene. This dataset, used for
the second experiment, is generally harder to reproduce due
to the high-texture objects. Note that, the FoV of the second
dataset is smaller due to the perspective acquisition.

A. Parameters’ analysis

This experiment studies the impact of the parameters of our
method on a small popular dataset (i.e. Dice [23]). Our three
weighted approaches are compared to the conventional method
by varying the frame number NF , up to six frames, and the
parameter β, cf. Fig. 3. Since the weighted approaches use
horizontal and vertical frame numbers, the first five frames
are only set horizontally (i.e. NFv

= 1 and NF = NFu
) but

the sixth one is set to three horizontal frames and two vertical
frames.

It is observed that the naive approach, i.e. Uniform-
Gaussian, fails to outperform the conventional method for low
values of β for any frame number. When β exceeds 2.5, it
yields slightly higher or similar results. These observations are
also valid for the other two approaches even if their PSNR
loss is significantly lower and more spread. The fact that

(a) Uniform-Gaussian (c) Bordered-Gaussian(b) Centered-Gaussian

Fig. 4. Difference of PSNR quality for all viewpoints of our weighted
approaches using 6 frames and β = 5.097 with the conventional method
using 6 frames. Gains are highlighted in yellow while losses are in orange .

only high β values yield similar or minor improved results
would mean that the optimization process is preferable to be
used with a good amount of information. Indeed, if β is low,
most Gaussian distributions are narrow and the information
contained in some viewpoints is not used anymore during
the optimization process. Therefore, carefully choosing β is
crucial.

It is important to note that our method gives slightly
higher results when utilizing only one frame, i.e. absence of
multiplexing, certainly due to the low-textured background,
dice, and low parallax of the Dice dataset. When employing a
single frame, our method focuses the optimization process on
the central view, resulting in very high PSNR values(≈ 40−50
dB) for that particular view. For border views, reasonable
values (≈ 24− 27 dB) are achieved. Hence, with our method,
we noted that the average PSNR is biased when only one
frame is employed.

B. Analysis on large Field of View

The second experiment analyzes the impact of the method
on a wide FoV. To accomplish this, a wider dataset was used,
SauceDino [24], to compare the mean quality of (a) a single
conventional frame, (b) employing six conventional frames,
and (c) utilizing ten conventional frames with our approaches
using different parametrizations. Table I summarizes the mini-
mum, maximum, and mean PSNR of the reproduced light field
optimized with the different configurations. Additionally, the
differences in the mean PSNR between the three conventional
configurations and the others using our method are presented.
The worst and best results are highlighted with different colors.
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(c) Conventional(b) Conventional
(a) Target

(d) Conventional

(f) Centered-Gaussian(e) Uniform-Gaussian (g) Bordered-Gaussian

Fig. 5. Subjective comparison of one of the top-left views from (a) the target light field and (b-g) the light fields reproduced with different optimizations.

From the analysis of the three last rows of results, it is
evident that the poorest outcomes are always given by the
Uniform-Gaussian approach with a low β value. Even when
optimizing six frames, the layer-wise optimization without
multiplexing still outperforms it by 1.2dB. For all our weighted
approaches, using a low β value always failed at giving similar
or better results than the conventional method using the same
frame number. These observations confirmed the sensitivity
of our method to β and that using a low β might lose some
essential information needed during the optimization process.
Also, as in the first experiment, our method gives a minor
improvement of 0.17 dB when higher β values are used.
This minor improvement is studied carefully by subjectively
comparing one reproduced view in the last experiment.

When more information is available to reproduce the light
field, as the conventional using ten frames, we observe that
our method failed at giving similar results.

C. Gain/loss distribution of multiplexing methods

In this experiment, we use the results collected in the
second experiment to focus on the distribution of the quality
in the reproduced light fields. Three multiplexing methods are
compared with the conventional method using six frames, cf.
Fig. 4.

The first and third approaches, Uniform-Gaussian and
Bordered-Gaussian with β = 5.097 and six frames, exhibit

better performance in the center of the light field while the
Centered-Gaussian is better in 97.7% of the light field. Even
if minor changes are observed on average, the quality is not
distributed randomly in the light field. This would possibly
mean that very slight improvements are achieved when the
average is slightly superior.

It is interesting to note that top and right viewpoints appear
to be easier to reproduce due to the scene composition. Indeed,
the complexity of the scene is not uniformly distributed and
more textured objects are present on the bottom-left side, such
as the sauce and the letter cubes.

D. Subjective comparison of one viewpoint

Finally, a subjective comparison of one top-left viewpoint
of the light field is presented, cf. Fig. 5. We compare the views
reproduced by our weighted approaches using β = 5.097 and
six frames to the conventional method using one, six, and
ten frame(s). Overall, only small differences can be observed
between the views reproduced with a multiplexing method,
such as the noise amount in the bottle sticker. However, since
only the noise amount is reduced, it is difficult to conclude
that any approach yields improvements.

In zoom-in regions, as stated in Table I, the configuration
with ten conventional frames gives the best results while the
method without multiplexing gives the worst. Ranking the
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remaining subjective results is challenging due to their high
similarity.

IV. CONCLUSION

In this study, we introduced a novel weighted-multiplexing
method consisting of three weighted approaches that can be
adjusted using two parameters: the weight-control β and the
amplitude parameter c. Our method divides the FoV evenly
among the frames and employs weights to guide the optimiza-
tion process of each frame on specific viewpoints in the input
light field. Furthermore, we conducted experiments using two
datasets to study the effects of incorporating weights in the
multiplexing procedure.

As expected, our method does not yield considerable im-
provement compared to the conventional method, and in
fact, yields inferior results when the weight-control param-
eter was set to a low value. In such cases, the Gaus-
sian distributions, defining the weights, become narrow, re-
sulting in some viewpoints being disregarded. Because the
optimization process is done considering less information,
viewpoint-dependent weights are undoubtedly sub-optimal for
a weighted-multiplexing method. Therefore, we foresee the use
of pixel-dependent weights for a further weighted-multiplexing
method. By defining weights based on pixel information or
groups of pixels, it may be possible to achieve adjustable
frame optimization based on the input data while avoiding
the removal of important information during the optimization
process.
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Abstract—Three-dimensional electron microscopy (3DEM) is
an essential technique to investigate volumetric tissue ultra-
structure. Due to technical limitations and high imaging costs,
samples are often imaged anisotropically, where resolution in
the axial direction (z) is lower than in the lateral directions
(x, y). This anisotropy 3DEM can hamper subsequent analysis
and visualization tasks. To overcome this limitation, we propose a
novel deep-learning (DL)-based self-supervised super-resolution
approach that computationally reconstructs isotropic 3DEM from
the anisotropic acquisition. The proposed DL-based framework
is built upon the U-shape architecture incorporating vision-
transformer (ViT) blocks, enabling high-capability learning of
local and global multi-scale image dependencies. To train the
tailored network, we employ a self-supervised approach. Specif-
ically, we generate pairs of anisotropic and isotropic training
datasets from the given anisotropic 3DEM data. By feeding the
given anisotropic 3DEM dataset in the trained network through
our proposed framework, the isotropic 3DEM is obtained.
Importantly, this isotropic reconstruction approach relies solely
on the given anisotropic 3DEM dataset and does not require
pairs of co-registered anisotropic and isotropic 3DEM training
datasets. To evaluate the effectiveness of the proposed method, we
conducted experiments using three 3DEM datasets acquired from
brain. The experimental results demonstrated that our proposed
framework could successfully reconstruct isotropic 3DEM from
the anisotropic acquisition.

Index Terms—self-supervised, super-resolution, electron mi-
croscopy, isotropic reconstruction, deep learning.

I. INTRODUCTION

Three-dimensional electron microscopy (3DEM) enables
the visualization and analysis of volumetric tissue ultrastruc-
ture at nanometer resolution. Achieving isotropic acquisition,
where resolution is consistent in all dimensions, can assist
downstream image analysis and visualization tasks. However,
practical limitations, such as the constraints of EM techniques
and imaging time and costs, often lead to achieving the
resolution in the axial (z) direction lower than lateral (x, y)
directions. Focused ion beam scanning EM (FIB-SEM) is one
EM technique that can obtain isotropic 3DEM images with
sub-10nm resolution in all directions; however, FIB-SEM is
low-throughput. On the other hand, serial section transmission
EM (ssTEM) or serial block-face scanning EM (SBEM) offers

This work was in part supported by the Academy of Finland (#323385),
the Erkko Foundation, and the Doctoral Programme in Molecular Medicine
at the University of Eastern Finland.

higher throughput and cost-effectiveness compared to FIB-
SEM but cannot achieve the required axial resolution [1].
Image super-resolution (SR) is a computational approach that
can increase the axial resolution to match lateral resolu-
tions, enabling the reconstruction of isotropic 3DEM from
anisotropic acquisitions.

Traditional SR approaches rely on interpolation methods,
which can increase axial resolution. However, these methods
have limitations in recovering fine missing details in low-
resolution (LR) axial planes (xz/yz). To overcome these
limitations, learning-based methods have been proposed that
leverage prior knowledge about the latent data to the in-
terpolation. One such method is sparse representation over
learned dictionaries, which has been used in various SR
applications [2], [3]. However, since dictionaries are learned
from small image patches, they may not reconstruct high-
quality EM images with large field-of-view. Authors in [4]
proposed a dictionary-learning-based approach to reconstruct
isotropic 3DEM by combining anisotropic 3DEM with sparse
tomographic views of the same sample acquired at a finer
axial resolution. While this approach offered a promising
solution for isotropic reconstruction of 3DEM, it relies on the
availability of both anisotropic and sparse tomographic views,
which may not always be feasible.

Deep learning (DL) has emerged as a promising approach
for SR in computer vision [7], medical [8], and biomedical
[9] applications. DL-based methods follow an end-to-end
learning procedure, enabling them to effectively learn the map-
pings from LR to high-resolution (HR) spaces when abundant
LR and HR training datasets are available. The DL-based ap-
proach for isotropic 3DEM reconstruction from the anisotropic
acquisition was introduced in [10], in which authors adopted
a 3D convolutional neural network (CNN) architectures, then
trained it using pairs of down-sampled isotropic 3DEM (syn-
thetic anisotropic) and isotropic 3DEM acquired from FIB-
SEM and tested on images obtained from the same technology.
However, this approach has some limitations. Importantly, it
requires the availability of isotropic 3DEM images at the
desired resolution, which is often not feasible – especially in
ssTEM and SBEM techniques. Additionally, when the network
is fed with anisotropic 3DEM images acquired from a different
technology, severe performance drops, and artifacts may occur
due to the domain gap between EM imaging techniques.

979-8-3503-4218-5/23$31.00©2023 European Union
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Fig. 1. Ultra-structural self-similarity in 3DEM datasets from the rat brain. A) Gray matter [5] demonstrates the ultra-structural self-similarity across a wide
range of sizes, while B) white matter [6] predominantly exhibits this self-similarity in smaller structures.

Self-supervised super-resolution learning is a powerful tech-
nique that can eliminate the need for training datasets and
address the domain gap between training and test datasets.
It involves training super-resolution algorithms solely on the
given LR image, using synthetically generated LR-HR training
pairs derived from the LR image itself. Authors in [11]
introduced the concept of self-supervised super-resolution
learning, where they harnessed the internal recurrence of
information inside a given LR natural image across different
resolution scales to generate synthetic pairs of LR and HR
image datasets. When the network is trained, the given LR
image is fed to the network to produce the corresponding HR
image. This approach has been employed within studies in
the biomedical [12] and medical [13] domains to produce 3D
isotropic images from the anisotropic acquisition, respectively,
with the focus on the optical fluorescence microscopy and
magnetic resonance imaging.

Motivated by the remarkable self-similarity observed in
ultra-structures within brain 3DEM datasets, we present an ef-
ficient self-supervised super-resolution framework specifically
designed to transform anisotropic 3DEM data into isotropic
3DEM, named A2I-3DEM. The key contributions of our work
are as follows:

• We propose a framework for reconstructing isotropic
3DEM data from anisotropic acquisition while mitigat-
ing the inherent noise-like artifacts present in electron
microscopy.

• We introduce a novel DL architecture based on the vision
transformer, which effectively captures multi-scale local
and global image dependencies, helping in enhanced
reconstruction.

• We employ an efficient training strategy by simulating
the distortions commonly observed in 3DEM imaging.

II. METHOD

Let x ∈ RW×W×W and y ∈ RW×W×C denote respectively
isotropic and anisotropic 3DEM, where ρ = W/C indicates
the resolution ratio between isotropic and anisotropic acquisi-
tions in the axial direction (z), i.e., super-resolution ratio. In
this section, we introduce our ViT-empowered self-supervised

super-resolution approach to reconstruct isotropic 3DEM, x,
from the anisotropic acquisition y.

A. Self-Supervised Super-Resolution

Self-similarity of ultra-structures between lateral and axial
planes in 3DEM data, especially in the brain gray matter,
allows for self-supervised learning upon the anisotropic 3DEM
data, see Fig 1. Leveraging such a structural self-similarity,
we can synthesize training image pairs from the isotropic
xy−lateral plane. To synthesize the training pairs, large
patches that adequately represent the ultrastructural features
of interest are extracted from the lateral plane P i

xy ∈ RM×M .
These patches are then subjected to various degradations
such as noise, artifacts, distortions, and anisotropic under-
sampling resolution with ratio 1/ρ to generate corresponding
synthesized axial patches P i

xz/yz ∈ R(M/ρ)×M . The synthe-
sized pairs {(P i

xz/yz, P
i
xy)}Ni=1 are then used to train network

fθ(·) : R(M/ρ)×M → RM×M parameterized with θ to
learn the mapping from axial to lateral planes. In practice,
ρ may not always be an integer, which poses challenges to
determining the mapping. To overcome this issue, we first
employ interpolation to resize the anisotropic data to match
the desired isotropic data size. This interpolated data is then
utilized as the LR image. The network’s parameters θ are
obtained by optimizing the following empirical loss:

θ̂ = argmin
θ

N∑
i=1

L(fθ(P i
xz/yz), P

i
xy), (1)

where L is the loss function between network prediction
fθ(Pxz/yz) and ground truth Pxy . The trained network fθ(·)
is then used to super-resolve the real axial planes to the
desired resolution. Finally, by stacking the super-resolved axial
planes in the perpendicular direction, the isotropic 3DEM is
reconstructed. The proposed self-supervised super-resolution
framework is illustrated in Fig.2.

B. Network Architecture

1) Overall Pipeline: The proposed network architecture is a
hierarchical U-shaped design of the encoder-decoder equipped
with ViT blocks, as illustrated in Fig.3. The input is a low-
resolution axial plane image, I ∈ R1×H×W , which is first
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Fig. 2. The workflow of the proposed self-supervised super-resolution framework for the isotropic reconstruction of 3DEM from the anisotropic acquisition.
A) Input 3DEM data is anisotropic, with high resolution in the lateral (x, y) directions and inferior resolution in the axial direction (z). B) Training pairs
are synthesized from the anisotropic 3DEM data. The isotropic xy−lateral plane undergoes under-sampling and distortions to synthesize the xz− and
yz−anisotropic axial planes. C) The proposed network is trained using synthesized training pairs, where the interpolated synthesized axial plane is employed
as LR input, while the isotropic lateral plane is regarded as GT. D) The trained network sequentially takes each axial plane as input, and the resultant outputs
are stacked together to obtain isotropic 3DEM, involving two steps: Initially, 3D interpolation is employed to resize the anisotropic 3DEM data, aligning it
with the size of the desire 3D isotropic data. Subsequently, the trained network is consecutively fed with each slice from the interpolated data’s axial plane,
and the resultant outputs are stacked together to generate isotropic 3DEM with an improved resolution in the axial direction. E) The output is an isotropic
3DEM with the improved resolution ratio ρ in the axial direction.

fed through convolutional layers to extract low-level features,
X0 ∈ RC×H×W , where C, H , and W respectively indicate
the number of channels, height, and width. Afterward, the
feature map is passed through a symmetric encoder-decoder
with K levels. Starting from the first encoder, the encoder
hierarchically reduces the spatial resolution (H × W ) while
increasing the channel size, leading to the bottleneck feature
map, Fℓ ∈ R2K−1C× H

2K−1 × W

2K−1 . The feature maps from
the bottleneck and encoders are then passed to the decoders
to progressively produce the high-resolution representation.
Finally, the low-level features are added to the output from
the last decoder, and fed with to the feature projection block,
producing the super-resolved image.

2) Vision Transformer: The ViTs partition an image into
a sequence of small patches, i.e., local windows, and learn
relationships between them. By learning these relationships,
the ViT can learn a wide range of image dependencies, which
is crucial for achieving high performance in low-level vision
tasks like image super-resolution. To capture both global and
local image dependencies while keeping computational costs
low, we employ the window-based multi-head attention (W-
MSA) approach [14], [15]. The extracted attention maps
using W-MSA are then passed through the novel gating
mechanism, called the gated locally-enhanced feed-forward
network (GLEN), to enhance the important features while

suppressing the less important ones. These W-MSA and GLEN
are embedded into a ViT block illustrated in Fig.3, and the
corresponding computation is as follows:

X′ = W-MSA(LN(X)),

X′′ = GLEN(LN(X′)) +X′,
(2)

where, LN is layer normalization and X is the input feature
map.

a) W-MSA: The input feature map X ∈ RC×H×W is
firstly partitioned into N = HW/M2 non-overlapping M×M
local windows, leading to the local feature map Xi ∈ RM2×C .
The standard self-attention mechanism is then applied to each
local feature map. The W-MSA, when there is k head with the
dimension of dk = C/k, is obtained by concatenating attention
heads X̂k = {Yi

k}Ni=1, where Yi
k is k-th head attention related

to i-th local window calculated as below:

Yi
k = Attention(XiWQ

k ,X
iWK

k ,XiWV
k ), i = 1, . . . , N,

(3)
where WQ

k , WK
k , WV

k ∈ RC×dk are projection metrices
of queries (Q), keys (K), and values (V) for the k-th head,
respectively. The attention is obtained as follows:

Attention(Q,K,V) = SoftMax(
QKT

√
dk

+B)V, (4)

where B is the relative position bias [16].

174



Fig. 3. The proposed U-shaped architecture based on the vision transformer. Training and testing are illustrated in the upper part of the figure, marked
respectively in red and green. The bottom part of the figure visualizes the component of the proposed architecture.

b) GLEN: This block processes attention maps through
two components: depth-wise convolution, which learns con-
textual image dependencies required for SR, and a gating
mechanism, which highlights informative features while sup-
pressing non-informative ones. As shown in Fig.3, the gating
mechanism is implemented as the element-wise product of two
parallel paths of linear transformation layers.

3) Loss Function: To optimize the network’s parameters,
we utilize the Lℓ1 = 1

N

∑N
i=1 ∥xi − x̂i∥1 and projected

distribution loss (PDL) [17], which respectively penalize pixel
value and distribution mismatch between restored image x̂
and ground truth x, ensuring both pixel-level accuracy and
distribution-level fidelity. The total loss is given by:

LTotal = Lℓ1 + αLPDL, (5)

where α is a hyperparameter governing the trade-off between
loss functions, which was empirically set to 0.01. For op-
timization, we employed the Adam algorithm [18] with an
initial learning rate of 10−4. The implementation was done
using PyTorch framework.

III. EXPERIMENTS AND RESULTS

A. Datasets
1) Synthetic Data: We synthesized an anisotropic 3DEM

dataset by under-sampling an isotropic FIB-SEM dataset [19].

In the first step, to reduce noise and artifacts in data, we
isotropically downscaled the original data– with voxel resolu-
tion 5×5×5 nm3 and image size of 1530×1530×1053– by
a factor of three, resulting in a voxel resolution of 15×15×15
nm3. Subsequently, we applied anisotropic downsampling to
achieve a voxel resolution of 15×15×45 nm3. These synthetic
pairs of anisotropic and isotropic 3DEM datasets were utilized
in our experiments.

2) Real Data: We used two anisotropic 3DEM datasets
acquired from rat brains through the SBEM technique. The
first dataset was acquired from the gray matter in the visual
cortex [5] with the size of 1024×1024×540, while the second
was acquired from the white matter at the corpus callosum [6],
with the size of 1024×1024×490. Both datasets had a voxel
resolution of 15× 15× 50 nm3.

B. Results

We compared the proposed super-resolution method, A2I-
3DEM, with several established techniques, including the
standard cubic interpolation approach as well as two CNN-
based methods: SRMD [20] and PSSR [9]. Additionally, we
considered a transformer-based method, SwinIR [15]. For
synthetic data, we utilized PSNR and SSIM [21] for quan-
titative assessments and visually compared the super-resolved
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Fig. 4. Visual comparison of isotropic 3DEM reconstruction results using various methods on the synthetic dataset: xz−axial plane perspective.

Fig. 5. Visual comparison of isotropic 3DEM reconstruction results using various methods on the real dataset from gray matter: xz−axial plane perspective.

volumes with the reference. For real data, lacking a reference,
we visually compared the results with the Cubic interpolated
data, the initial point for all competitors, to assess resolution
enhancement and consistency of details.

For the synthetic dataset, where we have the reference, a
visual comparison with competitors is drawn in Fig. 4, and
corresponding quantitative results were tabulated in TableI. In
Fig. 4, orange restricted areas show that cubic and SRMD
led to severely blurred results. Among other methods, A2I-
3DEM and SwinIR could produce images with better contrast
and distinguishable membranes. Notably, as pointed out by
the arrows, A2I-3DEM outperforms SwinIR by producing
outputs with reduced blurriness. The superiority of A2I-3DEM
is in agreement with the PSNR value reported in TableI.
However, SSIM values contradict the visual outcomes, as the
cubic interpolation method appears to outperform all other
competitors according to SSIM. This discrepancy calls for an
alternative image quality assessment metric.

TABLE I
QUANTITATIVE COMPARISONS OF ISOTROPIC 3DEM RECONSTRUCTION

ON THE SYNTHETIC DATASET. THE BEST METRIC VALUE FOR EACH
METHOD IS MARKED IN BOLD.

Metric Method
Cubic SRMD PSSR SwinIR A2I-3DEM

PSNR 28.15 29.16 29.11 30.57 30.61
SSIM 0.698 0.644 0.675 0.632 0.645

Visual comparison of the first real dataset, pertaining to
brain gray matter, is presented in Fig. 5. Consistent with
expectations, DL-based methods demonstrate enhanced detail
compared to cubic interpolation. Zooming in on specific
regions in Fig. 5 (B-E), artifacts such as black point artifacts in
white areas or white point artifacts in black areas are evident
in the results of SRMD, PSSR, and SwinIR. In contrast, A2I-
3DEM not only avoids these artifacts but also successfully
reduces noise compared to the other methods.
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Fig. 6. Isotropic 3DEM reconstruction of real dataset from white matter:
xz−axial plane perspective.

A subset of visual results from the second real dataset,
related to brain white matter, is depicted in Fig. 6. These
results highlight the success of our proposed self-supervised
method in enhancing the resolution of the given LR image
while effectively mitigating noise.

IV. CONCLUSION

This paper introduced a deep-learning-based self-supervised
super-resolution framework to overcome the challenge of
acquiring isotropic 3DEM. The framework’s ability to generate
training datasets directly from the provided anisotropic 3DEM
data makes it a practical preprocessing tool for downstream
visualization and processing tasks. The incorporation of simu-
lated distortions within the efficient training strategy not only
improved the model’s generalizability but also enabled the
network to learn to mitigate noise that exists in the given LR
EM image. Furthermore, the proposed U-shaped architecture,
equipped with ViT blocks, effectively captures multi-scale
local and global image dependencies, leading to enhanced re-
construction performance. Experimental evaluations conducted
on 3DEM datasets of brain tissue demonstrated the network’s
proficiency in recovering fine details while effectively mitigat-
ing noise.
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Abstract—Generating images with realistic material appear-
ance using a physically-based renderer demands significant
time and human labor. The images are used in psychophysical
experiments to study human perception of material appearance
attributes, such as glossiness. Recently, deep learning-based image
synthesis models have emerged as a promising approach for
generating realistic images with less human supervision. Deep
Generative Models are deep learning-based models that learn to
generate unique and novel images based on a given training data
distribution. Using them for image synthesis is fast and manually
less tiresome. An additional benefit these Deep Generative Models
offer is latent space encodings that may help to better understand
the feature space of gloss and its perception. In this study,
we propose to explore the possibility of using Deep Generative
Models for realistic image synthesis, focusing on gloss appearance
and evaluating the efficiency of such gloss generation process
using psychophysical experiments. Additionally, we build tools
to extract the latent space of generative models to use them as a
feature space representation of gloss appearance and perception.
Finally, we analyse the trends and patterns in the learnt feature
space to aid gloss appearance modelling.

Index Terms—Gloss Perception, Image Synthesis, Material
Appearance Modelling, Learning a Feature Space Representation

I. INTRODUCTION

Perception of material appearance and its properties is fun-
damental to humans for interacting with the environment. The
human visual system (HVS) has complex and sophisticated
mechanisms for appearance perception that are a product
of millions of years of evolution and remain poorly under-
stood [1], [2]. Gloss – together with color, texture, and translu-
cency – is one of the fundamental attributes of how objects and
materials look [3]. Although gloss is primarily understood as
a surface reflectance property, the link between instrumentally
measured and human perceived gloss is complex and non-
monotonic [4], [5]. Multiple handcrafted features have been
proposed to predict gloss appearance from image statistics [6]–
[8], but handcrafted features are rarely robust enough to
account for complex influences from shape, illumination, and
observation geometry [9]–[11].

Perceptual studies often involve computer graphics to gen-
erate the experimental stimuli. The process of rendering im-
ages with glossy surfaces involves understanding the complex
interactions between all the intrinsic (optical properties) and

extrinsic (environmental) factors. Most images generated using
physically-based renderers are labelled using the physical
parameter values. This does not help us to understand how
the human visual system deciphers gloss appearances and how
each factor influences gloss perception in humans. We need a
better representation for navigating the gloss appearance space.
It is not easy to handcraft features for human gloss perception
as it is not fully understood how the human visual system
deciphers gloss appearance into individual factors [2], and
more efficient feature space is needed. Apart from that, using
a physically-based renderer (such as Mitsuba [12]) is both
very time-consuming and human labor-intensive. It would be
desirable to develop a way to render or generate images with
a realistic gloss appearance that requires minimal supervision.

Deep Generative Models have shown promising results in
generating realistic images. Image synthesis in deep learning
refers to generating images using neural networks. Deep
Generative Models are based on deep learning. They learn
to generate novel images based on a training data distribution.
They first learn to model the distribution in the images in
the training data and then use the learnt patterns to generate
novel images that are not part of the training dataset. Deep
Generative Models are considered unsupervised as they neither
need manual supervision during training nor annotations for
the data they are being trained on. The learning process is
data-driven, i.e., the models learn to form the given data
without needing any target labels for the given data. They
have demonstrated capabilities in generating realistic novel
images that are not part of the training data. If we can generate
realistic material appearance using Deep Generative Models,
it would save us significant amounts of time and labor. Deep
Generative Models try to develop an understanding of the
statistical structure in the data distributions. In developing this
understanding, Deep Generative Models develop a latent space
representation for the data distribution. Thus, apart from aiding
in generating images, they also help us encode images into a
new latent space. The latent space of these models can be used
as a representational space for material appearance attributes.

The models encode the input image into its internal latent
space and then decode the latent vector from its internal latent
space into output images. During training, the model optimises
this encoding and decoding process and learns to model the

979-8-3503-4218-5/23/$31.00 © 2023 IEEE
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statistical structure in the data distribution of the input images
in its internal latent space. This way, in an unsupervised
manner, we end up with a new feature space representation
of the images in the training dataset. We can use this new
feature space to better understand the dataset. It is believed
that the HVS exploits statistical structure and regularities in
the environment to derive information about our surroundings
and develop perception and awareness of the world [13]. The
development of latent space in Deep Generative Models is
similar, and it is hypothesized that such feature space can
eventually be used to model the perception of the HVS.

In this work, we trained a Deep Generative Model with low
number of physically-based renderings of glossy objects and
synthesized novel images with this model to check whether
it can produce realistic images. We report the results of
a psychophysical experiment that we conducted to assess
the convincingness of the synthesized images. Afterward, we
explore the latent space to understand the feature space of
gloss and navigate through it in a meaningful manner.

II. RELATED WORK

Several attempts have been made in developing a feature
representation for material appearance for surface gloss [7],
[14], surface roughness [15], [16], transparency [17], [18], and
translucency [19]–[21]. The studies use an analytical approach
to find diagnostic image features for material perception.
There is a significant challenge in this approach, since the
features may not be stable across a broad range of intrinsic
and extrinsic factors [1], [19]. An alternative approach in
the diagnosis of features for material appearance is a data-
driven one [22], [23]. These approaches attempt to extract
features of material appearance by modeling the statistical
distribution of material appearance across image samples. This
approach has demonstrated great potential in modeling human
perception [24]. Especially with the rapid progress of deep
neural networks to learn patterns from enormous and diverse
datasets, data-driven approaches show a significant potential in
perception modeling [25]–[27]. Convolutional neural networks
can be used to extract features from the images.

For long, deep learning-based techniques were used to
analyse images for content objects etc. Recently, with the
advancements in deep learning-based techniques, neural net-
works can generate images from random noise [28], seed [29],
or text inputs [30], with remarkable realism. These networks
can learn an image generation procedure from the training
dataset’s images. During training, they model the statistical
structure in the distribution of images in the training set and
construct an internal latent space representation for all the
images in the training dataset. With models that generate accu-
rate, realistic images, the internal latent space can be extracted
and used as an efficient and compact feature representation of
the distribution of images in the training dataset.

Generative Adversarial Networks (GANs) [31] is a break-
through architecture on which most of the state-of-the-art
Deep Generative Models are based. GANs consist of two
deep neural networks: a discriminator and a generator. The

task of the generator is to generate images from random input
vectors, similar to the training data distribution. Discriminator
judges whether the image presented is from the training
data distribution or the generator generates it. This way, the
generator is forced to get better at synthetic image generation.

StyleGANs can generate various styles at high-resolution
[32] and also be able to control the styles in the generated
images. For instance, Celeb-A dataset is a collection of high-
resolution images of the faces of celebrities. StyleGAN was
trained on this dataset. One can fine-tune the faces generated
by the model as one wishes. Using the learned inputs to
the network, one could control the face’s sharpness, the eye-
brows’ width, and the hair’s color. This way, StyleGANs were
able to perform high-resolution image synthesis. However,
StyleGANs still suffered from multiple issues, like water
droplet artefacts and shift-invariance. Blob artefacts have been
found in images generated by StyleGANs. StyleGAN2 [29]
and StyleGAN2-ADA [33] propose some improvements to
tackle these issues. Although StyleGAN2 has solved the issue
of high-resolution image synthesis, the problem of requiring
enormous-sized datasets to train GANs persists. StyleGAN2-
ADA solves the issue of having large datasets and provides
a way to train deep generative models on little data [33].
ADA stands for Adaptive Discriminator Augmentation. Style-
GAN2 makes use of Adaptive Discriminator Augmentation
instead of Stochastic Discriminator Augmentation. This way,
StyleGAN2-ADA provides a way to train image synthesis
models with limited data.

Some attempts have been made to construct a feature
space for material appearance based on deep learning-based
models’ internal latent space embedding. Storrs et al. [24]
used Variational Autoencoder (VAE) to model the distribution
in images with gloss and matte surfaces . The study has
shown that the image features from the internal latent space
encoding of trained VAE models correlate well with human
gloss perception and even mimic the mistakes that humans
make in gloss judgments.

Generative Adversarial Networks (GANs) show improve-
ments over VAEs in realistic image synthesis. Liao et al. [34]
have generated realistic images of translucent objects with
GANs and noticed that structured perceptual attributes emerge
in the model’s representation. They suggest that Deep Gener-
ative Models can discover an efficient and compact feature
representation space for material appearance and can be po-
tentially used to mimic the perception model of the HVS.

III. METHODOLOGY

Building upon the literature, we propose to train
StyleGAN2-ADA [33] on physically-based renderings of
glossy objects. We then evaluate the realism of images gener-
ated by the trained model, build tools to encode images into
the latent space of the trained model and vice versa, build
tools to traverse and analyse the feature space representation
to check for gloss appearance attributes and analyse the
usability of such feature space in aiding understanding of gloss
appearance.
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Fig. 1. Some samples from the training dataset.

A. StyleGAN2-ADA

StyleGAN2-ADA [33] is a Generative Adversarial Net-
work designed by researchers at NVIDIA. The implementa-
tion provided by NVIDIA in the official GitHub repository
is used for all the experiments (https://github.com/NVlabs/
stylegan2-ada-pytorch). No specific changes have been made
to the network architecture and training procedures. Style-
GANs do not use the latent space directly. They first map these
latent vectors into an extended latent space before generating
an image. In the latent space Z, z is a 512 feature vector. Seed
is the number used to generate this 512 feature vector. Then
this latent vector is mapped into the extended latent space W. A
vector w (w ∈ W ) is of dimensions 1×14×512. StyleGAN2-
ADA applies data augmentation after the input component for
both the generator and the discriminator. StyleGAN2-ADA
solves the issue of collecting images to create large-scale
datasets. It involves flipping the images, rotating them by a
small angle, and zooming in on the image, among others.

B. Dataset

We used 132 physically-based renderings of glossy spher-
ical objects rendered with Mitsuba [12] (can be accessed at
https://github.com/davitgigilashvili/GANs4GlossEUVIP). The
objects vary in surface roughness, lightness, and translucency
– covering a broad range of gloss appearances. To increase
the size of the dataset, we performed the augmentations by
rotating the image by 90, 180 and 270 degrees, thus quadru-
pling the size of the dataset to 528 images. The examples of
the images that were used for training are shown in Fig. 1.

C. Training

We use model weights from the pre-trained model on the
(Flickr-Faces-HQ) FFHQ dataset [29] and transfer learning
to train StyleGAN2-ADA to generate images with a realistic
gloss appearance. We train the model for 5000kimg (i.e.
how many images are evaluated; 528 × number of epochs).
Training such an advanced GAN like StyleGAN2-ADA re-
quires much computational power. We have used two NVIDIA
TITAN RTX GPUs to run all our experiments. We train the
model to generate images with a resolution of 256×256 pixels.

The batch size used for training the model is 32, parallelised
over two GPUs. A learning rate of 0.0025 is used for the
transfer learning process. It took one day, 17 hours and 42
minutes to train the StyleGAN2-ADA model for 5000 kimg.

D. Image Synthesis

In StyleGAN-based architectures, a mapping network is
used to map vectors from latent space Z to extended latent
space W . These latent vectors w are directly plugged into the
various layers of the network, thus giving us direct control to
alter the styles in the images being generated. Since we do not
have any understanding of the latent space of the model, to
explore this latent space, we need to sample the feature space
randomly. To do this, we randomly generate latent vectors
from the space. Most random number generators are built on
algorithms that start with a base value as an input known as
a seed. For the same seed, we always get the same output
random value. This helps us to lock random vectors across
the experiments. We use seed values from 0 to 2000 and
generate corresponding images using the trained StyleGAN2-
ADA network. The first step in generating images from the
seed involves generating latent vector z from the seed. Later,
the latent vector z (1× 512 feature space) is mapped into the
extended latent space W . The resulting vector w (w ∈ W ) is
fed to the generator of StyleGAN2-ADA to generate images.

E. Evaluation

We evaluate the images using two methods. The first one in-
volves using an image quality metric called Frechet Inception
Distance (FID), which is a popular method to compare real
and synthetic images [35]. We calculate FID after every 400
epochs, 50k images are generated from randomly sampling
the latent space. FID is calculated on these 50k images by
comparing them to the images in the training set.

The second method to evaluate performance was psy-
chophysical experiment, which was hosted at the online
QuickEval [36] platform. 19 observers participated in the
experiment – mostly researchers and graduate students with
substantial knowledge of graphics and appearance. In total,
the observers were shown 60 images, 30 real images and
30 synthetic images. The real images were selected from the
training set. Some of the synthetic images were those that
were trying to mimic the respective real ones, while others
corresponded to the random vectors from the latent space.
The observers were asked to judge whether the image was
real or synthetic. We explained to them that Real means that
the images were generated using physically-based rendering
with human supervision, while Synthetic ones were produced
by GANs without human supervision. They were instructed to
judge the realism of the images solely based on the realism
of the gloss on the surface of the sphere.

F. Latent Space Exploration

We use the algorithm discussed above to generate W space
latent vectors for all the images in the training dataset. The
latent vector z (z ∈ Z) is of size 1 × 512, and the extended
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Fig. 2. The first objective is the synthesis of the realistic images. The original
images are shown in the top row. They are projected into the extended latent
space W . Synthetic images generated from the corresponding w latent vectors
are shown in the bottom row that look highly similar to those in the top row.

Fig. 3. Interpolations of images (performed in the latent W space) generated
between the two target images shown on the left and right of each row.

latent space vectors w are of the size 1× 14× 512. We have
generated the corresponding latent vector w for every input
image in the training dataset. We then use this latent vector
w to generate the image. This generated image is referred to
as a fake image. The original image is referred to as a real
image. The examples are illustrated in Fig. 2.

We perform linear interpolation between the latent space
encodings in the W space. To generate interpolations between
Image A and Image B, we first find the latent space encod-
ings of these two images in GAN’s latent space. We then
perform linear interpolation between the two corresponding
latent codes generating a set of new latent codes. We then
generate images from these interpolated latent codes. In other
words, we can morph between two target images to generate
interpolations between these two images. Fig. 3 demonstrates
that the interpolations in the latent space W look perceptually
meaningful, which indicates that the space is well-developed.

We also explored the directions in the latent space. Ex-
ploring directions in the latent space means moving along
a specific dimension of the feature space and seeing how it
affects the resulting images generated. In this experiment, we
limit the directions to primary dimensions in the data, i.e. if
the latent space has 512 dimensions, we explore along these
512 directions only. This is a simple algorithm developed from
scratch by us to traverse through the latent space of the models.
However, there is a significant limitation here. We are only
exploring the directions along the primary dimensions. What
about the direction with a slope of 45 degrees with the two
primary directions? The possible directions are infinite in the
data. This can be addressed in future works.

Shen et al. [37] propose closed form factorisation, a simple
and efficient way to explore latent semantics in GANs to

Fig. 4. FID score of images generated (vertical) vs epochs trained (horizontal).

identify interpretable dimensions in the latent space of GANs
and to extract the underlying patterns. The algorithm identifies
semantically meaningful directions in the latent space by
decomposition on the model weights. The output of closed-
form factorisation is eigenvectors corresponding to the largest
eigenvalues that maximise the objective function. The objec-
tive function is to find the directions in the latent space of
GANs that reveal explanatory factors. Once we have extracted
the interpretable directions in the latent space, the next step
is to traverse through these directions to check how each
direction impacts the style of the generated images.

IV. RESULTS

A. Evaluation

Fig. 4 shows how the FID score changes across epochs. As
mentioned earlier, a smaller FID score implies that the images
generated are closer to the images used for training and thus
more realistic. This is a decent score, considering that it is
evaluated on 50,000 images randomly sampled from the latent
space. By increasing the number of images used for training,
we can lower the FID score and thus improve the realism
in the images generated. The results of the psychophysical
experiments are shown in Table I. 69.02 % of the times
observers judged real images as real and 30.98 % of the
times observers judged real images as synthetic. When it
came to synthetic images, 53.53 % of the times observers
judged synthetic images as synthetic and 46.48 % of the times
observers judged synthetic images as real. This implies that it
was difficult for observers to assess if the images shown were
real or synthetic and shows the potential of our models to
generate realistic images that can trick humans.

B. Interpretable Directions

We have extracted 512 directions from the latent space and
traverse through them. In total, for images generated from
seeds 0 to 2000, we have generated the images by moving
5, 10, -5, -10 steps in each of the 512 directions exploited
from the latent space. It is not manually possible to analyse
all the images extracted, neither fits it within the scope of
this paper. Hence, we show some of the significant directions
extracted from closed form factorisation. From Fig. 5, we can
see that by moving in the direction of the first interpretable
direction, we can control the surface roughness and hence,
glossiness on the sphere. This way by extracting interpretable
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TABLE I
THE RESULTS OF THE PSYCHOPHYSICAL EXPERIMENT. OBSERVERS

FOUND IT CHALLENGING TO DISTINGUISH REAL AND SYNTHETIC IMAGES.

Judged Correctly Judged Incorrectly
Real 69.02% 30.98%
Synthetic 53.52% 46.48%

directions, we can control the styles in images generated by
our StyleGAN2-ADA model. We can see that, the surface
roughness changes, making the spheres appear less glossy
and more translucent. As the surface becomes smoother, we
see that the spheres appear more glossy and less translucent.
This is an interesting interaction between translucency and
glossiness that automatically appears in the latent space of
the model without any human supervision. From Fig. 6 we
can see that when moving in the direction of the second
extracted direction, we alter the style of translucency in the
resulting images. The level of glossiness is more or less
constant, but the level of translucency changes. This is very
interesting, cause moving in the first direction altered both
gloss and translucency in an inversely proportional relation,
but moving in the second direction only alters translucency
without altering gloss. From Fig. 7 we can see that when
moving in the third interpretable direction, we alter the size
of the sphere in resulting images. Specular highlights also
change slightly, but the change in size is more apparent. Thus,
using the extracted directions, we can alter the desired styles
like glossiness, translucency or size of the sphere in resulting
images. Analysing more directions would give us more control
over the appearance attributes and style in synthesized images.

This is a baseline study to demonstrate that the approach
can produce realistic images with very limited training set
and to make first steps toward explainability. The work has
limitations that will be addressed in future works. While fine
tuning works for many cases, future work can explore potential
changes in the architecture as well as training from scratch
on a more specific dataset. Currently we have 512 dimen-
sions that are perceptually non-uniform and exhibit cross-
contaminations among perceptual attributes (e.g. size and gloss
can change in the same dimension). Dimensionality reduction
techniques, such as PCA, can be used to reduce dimensionality
of the space from 512 to more manageable and perceptually
meaningful dimensions, and psychophysical experiments will
be needed to scale each dimension. Besides, we can use
differentiable rendering to map the latent space back to the
optical properties [38]. In addition to FID, future works can
use perceptual loss-based methods for evaluating the results.
Finally, although the approach is generalizable, the generated
images are limited by the training dataset that the model was
exposed to (e.g. single shape and environment map). Future
works should include more diverse training datasets with more
shapes, materials, and lighting conditions.

V. CONCLUSION
In this study, we have explored two things: 1) the potential

of Deep Generative Models for generating images with realis-

Fig. 5. Seed 6, 7, and 10 (from top to down, respectively). Moving in the
direction of first interpretable direction (the direction with largest eigen value).
From left to right, 10 steps in positive direction, 5 steps in positive direction,
image from seed, 5 steps in negative direction, 10 steps in negative direction.

Fig. 6. Seed 1, 6, 13. Moving in the direction of second interpretable direction.

Fig. 7. Seed 1, 15, 16. Moving in the direction of third interpretable direction.

tic glossy surfaces from a limited training dataset; and 2) the
usability of internal latent space of Deep Generative Models
as a compact feature representation space for gloss appear-
ance and perception. We trained StyleGAN2-ADA model to
generate images of spheres with realistic glossy surfaces. We
built the tools to generate the images from seeds, from z and
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w latent vectors. We have also built the tools to map images
to and from the internal latent space of StyleGAN2-ADA. We
then analysed usability of this latent space as a feature space
for gloss appearance and perception by extracted interpretable
directions from the latent space and moving in these directions.
It can be seen from our experiments and results that the images
generated by StyleGAN2-ADA trick human observers into
thinking that these were actually generated by human supervi-
sion in a physically based renderer. The results also show that
interesting interactions between gloss and translucency emerge
in the latent space of the trained model. This space can be used
to find relevant features for visual perception of gloss. From
linear interpolations between images, we can also see that
the latent space is quite well developed. However, there are
some limitations – some visual artifacts emerge due to a small
dataset size. This implies that the latent space of the model
contains some information gaps. Nevertheless, this shows the
potential of using Deep Generative Models to generate images
with realistic glossy surfaces even with a limited training set
and also the potential of latent space of these models to be
used as an efficient feature space for gloss appearance. It
is known that in neural networks, the initial layers of the
model are responsible for constructing low level features, and
the final layers of the model are responsible for constructing
higher level features. As a future work, the feature space can
be further studied to understand which layers of the model
influence what parameters of gloss in the synthesized images.
Also, psychophyscial experiments need to be conducted to
study how human perception correlates with the trends and
patterns emerged in the latent space. Overall, using Deep
Generative Models for realistic glossy image synthesis shows
promising results and certainly merits future research.
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Abstract—In recent years, neural image compression has
garnered considerable attention from both research and industry.
It has shown great promise in surpassing traditional methods in
terms of rate-distortion performance through the development
of end-to-end deep neural codecs. Despite these advancements,
there is still room for improvement, particularly in reducing
the coding rate while maintaining high reconstruction fidelity,
especially in non-homogeneous textured image areas. Current
models, including attention-based transform coding, also tend to
have a higher number of parameters and longer decoding times.
To address these challenges, we propose ConvNeXt-ChARM,
an efficient ConvNeXt-based transform coding framework. It
is coupled with a compute-efficient channel-wise auto-regressive
prior that captures both global and local contexts from the hyper
and quantized latent representations. Our architecture can be
optimized end-to-end, fully leveraging context information to
extract compact latent representations and achieve higher-quality
image reconstructions. Experimental results conducted on four
widely-used datasets demonstrate the effectiveness of ConvNeXt-
ChARM. It consistently delivers significant BD-rate (PSNR)
reductions, averaging 5.24% over the VVC reference encoder
(VTM-18.0) and 1.22% over the state-of-the-art learned image
compression method SwinT-ChARM. Additionally, we conduct
model scaling studies to verify the computational efficiency of
our approach. Furthermore, we perform objective and subjective
analyses to highlight the performance gap between ConvNeXt, the
next-generation ConvNet, and the Swin Transformer. Overall, our
proposed ConvNeXt-ChARM framework showcases improved
compression efficiency and reconstruction quality, establishing
itself as a promising solution in the field of neural image
compression.

I. INTRODUCTION

Visual information is crucial in human development, com-
munication, and engagement, and its compression is necessary
for effective storage and transmission over constrained wire-
less/wireline channels. Thus, thinking about new lossy image
compression approaches is a goldmine for scientific research.
The goal is to reduce an image file size by permanently
removing less critical information, particularly redundant data
and high frequencies, to obtain the most compact bit-stream
representation while preserving a certain level of visual fi-
delity. Nevertheless, the high compress rate and low distortion
are fundamentally opposing objectives involving optimizing
the rate-distortion tradeoff.

Conventional image and video compression standards
including JPEG [1], JPEG2000 [2], H.265/high-efficiency
video coding (HEVC) [3], and H.266/versatile video cod-
ing (VVC) [4], rely on hand-crafted creativity to present
module-based encoder/decoder block diagram. In addition,
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these codecs employ intra-prediction, fixed transform matrices,
quantization, context-adaptive arithmetic coders, and various
in-loop filters to reduce spatial and statistical redundancies,
and alleviate coding artifacts. However, it has taken several
years to standardize a conventional codec. Moreover, existing
image compression standards are not anticipated to be an ideal
and global solution for all types of image content due to the
rapid development of new image formats and the growth of
high-resolution mobile devices.

Lossy image compression consists of three modular parts:
transform, quantization, and entropy coding. Each of these
components can be represented as follows: i) autoencoders
as flexible nonlinear transforms where the encoder (i.e., anal-
ysis transform) extracts latent representation from an input
image and the decoder (i.e., synthesis transform) reconstructs
the image from the decoded latent, ii) various differentiable
quantization approaches which encode the latent into bitstream
through arithmetic coding algorithms, iii) deep generative
models as potent learnable entropy models estimating the
conditional probability distribution of the latent to reduce the
rate. Moreover, these three components can be optimized with
end-to-end training by reducing the joint loss of the distortion
between the original image and its reconstruction and the rate
needed to transmit the bitstream of latent representation.

Thanks to recent advances in deep learning, we have
seen many works exploring the potential of artificial neural
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networks (ANNs) to form various learned image and video
compression frameworks. Over the past two years, the per-
formance of neural compression has steadily improved thanks
to the prior line of study, reaching or outperforming state-of-
the-art conventional codecs. Some previous works use local
context [5]–[7], or additional side information [8]–[10] to
capture short-range spatial dependencies, and others use non-
local mechanism [11]–[14] as long-range spatial dependencies.
Recently, Toderici et al. [15] proposed a generative compres-
sion method achieving high-quality reconstructions, Minnen
et al. [16] introduced channel-conditioning and latent residual
prediction taking advantage of an entropy-constrained model
that uses both forward and backward adaptations, and Zhu et
al. [17] replaced all convolutions in the channel-wise auto-
regressive model (ChARM) prior approach [16] with Swin
Transformer [18] blocks, Zou et al. [19] combined the local-
aware attention mechanism with the global-related feature
learning and proposed a window-based attention module,
Koyuncu et al. [20] proposed a Transformer-based context
model, which generalizes the standard attention mechanism
to spatio-channel attention, Zhu et al. [21] proposed a prob-
abilistic vector quantization with cascaded estimation under
a multi-codebooks structure, Kim et al. [22] exploited the
joint global and local hyperpriors information in a content-
dependent manner using an attention mechanism, and He et
al. [23] adopted stacked residual blocks as nonlinear transform
and multi-dimension entropy estimation model.

One of the main challenges of learned transform coding is
the ability to identify the crucial information necessary for the
reconstruction, knowing that information overlooked during
encoding is usually lost and unrecoverable for decoding. An-
other main challenge is the tradeoff between performance and
decoding speed. While the existing approaches improve the
transform and entropy coding accuracy, they remain limited by
the higher decoding runtime and excessive model complexity
leading to an ineffective real-world use. Finally, we found
that attention-based networks taking advantage of attention
mechanisms to capture global dependencies, such as Swin
Transformer [18], have over-smoothed and contain undesirable
artifacts at low bitrates. Furthermore, the global semantic
information in image compression is less effective than in
other computer vision tasks [19].

In this paper, we propose a nonlinear transform built on
ConvNeXt blocks with additional down and up sampling
layers and paired with a ChARM prior, namely ConvNeXt-
ChARM. Recently proposed in [24], ConvNeXt is defined as
a modernized ResNet architecture toward the design of a vision
Transformer, which competes favorably with Transformers in
terms of efficiency, achieving state-of-the-art on ImageNet
classification task [25] and outperforming Swin Transformer
on COCO detection [26] and ADE20K segmentation [27]
challenges while maintaining the maturity and simplicity of
convolutional neural networks (ConvNets) [24]. The contribu-
tions of this paper are summarized as follows:

• We propose a learned image compression model that
leverages a stack of ConvNeXt blocks with down and

up-sampling layers for extracting contextualized and non-
linear information for effective latent decorrelation. We
maintain the convolution strengths like sliding window
strategy for computations sharing, translation equivari-
ance as a built-in inductive bias, and the local nature of
features, which are intrinsic to providing a better spatial
representation.

• We apply ConvNeXt-based transform coding layers for
generating and decoding both latent and hyper-latent to
consciously and subtly balance the importance of feature
compression through the end-to-end learning framework.

• We conduct experiments on four widely-used evaluation
datasets to explore possible coding gain sources and
demonstrate the effectiveness of ConvNeXt-ChARM. In
addition, we carried out a model scaling analysis to com-
pare the complexity of ConvNeXt and Swin Transformer.

Extensive experiments validate that the proposed ConvNeXt-
ChARM achieves state-of-the-art compression performance, as
illustrated in Figure 1, outperforming conventional and learned
image compression methods in the tradeoff between coding
efficiency and decoder complexity.

The rest of this paper is organized as follows. Section II
presents our overall framework along with a detailed descrip-
tion of the proposed architecture. Next, we dedicate Section III
to describe and analyze the experimental results. Finally,
Section IV concludes the paper.

II. PROPOSED CONVNEXT-CHARM MODEL

A. Problem Formulation

The objective of learned image compression is to minimize
the distortion between the original image and its reconstruc-
tion under a specific distortion-controlling hyper-parameter.
Assuming an input image x, the analysis transform ga, with
parameter ϕg , removes the image spatial redundancies and
generates the latent representation y. Then, this latent is quan-
tized to the discrete code ŷ using the quantization operator
⌈.⌋, from which a synthesis transform gs, with parameter θg ,
reconstructs the image denoted by x̂. The overall process can
be formulated as follows:

y = ga(x | ϕg),

ŷ = ⌈y⌋,
x̂ = gs(ŷ | θg).

(1)

A hyperprior model composed of a hyper-analysis and
hyper-synthesis transforms (ha, hs) with parameters (ϕh, θh)
is usually used to reduce the statistical redundancy among
latent variables. In particular, this hyperprior model assigns
a few extra bits as side information to transmit some spatial
structure information and helps to learn an accurate entropy
model. The hyperprior generation can be summarized as
follows:

z = ha(y | ϕh),

ẑ = ⌈z⌋,
pŷ|ẑ(ŷ | ẑ)← hs(ẑ | θh).

(2)
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Fig. 2. Overall ConvNeXt-ChARM Framework. We illustrate the image compression diagram of our ConvNeXt-ChARM with hyperprior and channel-wise
auto-regressive context model. We also present the ConvNeXt block used in both transform and hyper-transform coding for an end-to-end feature aggregation.

Transform and quantization introduce a distortion D =
MSE(x, x̂), for mean squared error (MSE) optimization that
measures the reconstruction quality with an estimated bitrate
R, corresponding to the expected rate of the quantized latents
and hyper-latents, as described bellow:

R = E
[
− log2(pŷ|ẑ(ŷ | ẑ))− log2(pẑ(ẑ))

]
. (3)

Representing (ga, gs), (ha, hs), and entropy model by deep
neural networks (DNNs) enables jointly optimizing the end-
to-end model by minimizing the rate-distortion tradeoff L,
giving a rate-controlling hyper-parameter λ. This optimization
problem can be presented as follows:

L = R+ λD,

= H(ŷ) +H(ẑ)︸ ︷︷ ︸
R

+λMSE(x, x̂), (4)

where H stands for the entropy.

B. ConvNeXt-ChARM network architecture

To better parameterize the distributions of the quantized
latent features with a more accurate and flexible entropy
model, we adopted the ChARM prior approach proposed in
[16] to build an efficient ConvNeXt-based learning image
compression model with strong compression performance. As
shown in Figure 2, the analysis/synthesis transform (ga, gs) of
our design consists of a combination of down and up-sampling
blocks and ConvNeXt encoding/decoding blocks [24], respec-
tively. Down and up-sampling blocks are performed using
Conv2D and Normalisation layers sequentially. The architec-
tures for hyper-transforms (ha, hs) are similar to (ga, gs) with
different stages and configurations.

C. ConvNeXt design description

Globally, ConvNeXt incorporates a series of architectural
choices from a Swin Transformer while maintaining

the network’s simplicity as a standard ConvNet without
introducing any attention-based modules. These design
decisions can be summarized as follows: macro design,
ResNeXt’s grouped convolution, inverted bottleneck, large
kernel size, and various layer-wise micro designs. In Figure 2,
we illustrates the ConvNeXt block, where the DConv2D(.)
refers for the a depthwise 2D convolution, LayerNorm for
the layer normalization, Dense(.) for the densely-connected
NN layer, and GELU for the activation function.

Macro design: The depth per stages is adjusted from
(3, 4, 6, 3) in ResNet-50 to (3, 3, 9, 3), which also aligns
the FLOPs with Swin-T. In addition, the ResNet-style stem
cell is replaced with a patchify layer implemented using a
2×2, stride two non-overlapping convolutional layers with an
additional normalization layer to help stabilize the training.
In ConvNeXt-ChARM diagram, we adopted the (3, 3, 9,
3) and (5, 1) as stage compute ratios for transforms and
hyper-transforms, respectively.

Depthwise convolution: The ConvNeXt block uses a
depthwise convolution, a special case of grouped convolution
used in ResNeXt [28], where the number of groups is equal
to the considered channels. This is similar to the weighted
sum operation in self-attention, which operates by mixing
information only in the spatial dimension.

Inverted bottleneck: Similar to Transformers, ConvNeXt
is designed with an inverted bottleneck block, where the
hidden dimension of the residual block is four times wider
than the input dimension. As illustrated in the ConvNeXt
block Figure 2, the first dense layer is 4 times wider then the
second one.
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large kernel: One of the most distinguishing aspects of
Swin Transformers is their local window in the self-attention
block. The information is propagated across windows, which
enables each layer to have a global receptive field. The local
window is at least 7×7 sized, which is still more extensive
than the 3×3 ResNeXt kernel size. Therefore, ConvNeXt
adopted large kernel-sized convolutions by using a 7×7
depthwise 2D convolution layer in each block. This allows
our ConvNeXt-ChARM model to capture global contexts in
both latents and hyper-latents, which are intrinsic to providing
a better spatial representation.

Micro design: In ConvNeXt’s micro-design, several
per-layer enhancements are applied in each block, by using: a
single Gaussian error linear unit (GELU) activation function
(instead of numerous ReLU), using a single LayerNorm as
normalization choice (instead of numerous BatchNorm), and
using separate down-sampling layers between stages.

III. RESULTS

First, we briefly describe used datasets with the implemen-
tation details. Then, we assess the compression efficiency of
our method with a rate-distortion comparison and compute
the average bitrate savings on four commonly-used evaluation
datasets. We further elaborate a model scaling and complexity
study to consistently examine the effectiveness of our proposed
method against pioneering ones.

A. Experimental Setup

Datasets. The training set of the CLIC2020 dataset is used
to train the proposed ConvNeXt-ChARM model. This dataset
contains a mix of professional and user-generated content
images in RGB color and grayscale formats. We evaluate
image compression models on four datasets, including
Kodak [29], Tecnick [29], JPEG-AI [29], and the testing
set of CLIC21 [29]. For a fair comparison, all images are
cropped to the highest possible multiples of 256 to avoid
padding for neural codecs.

Implementation details. We implemented all models in
TensorFlow using tensorFlow compression (TFC) library
[30], and the experimental study was carried out on an
RTX 5000 Ti GPU. All models were trained on the same
CLIC2020 training set with 3.5M steps using the ADAM
optimizer with parameters β1 = 0.9 and β2 = 0.999. The
initial learning rate is set to 10−4 and drops to 10−5 for
another 100k iterations, and L = R + λD as loss function.
The MSE is used as the distortion metric in RGB color
space. Each batch contains eight random 256 × 256 crops
from training images. To cover a wide range of rate and
distortion, for our proposed method, we trained five models
with λ ∈ {0.006, 0.009, 0.020, 0.050, 0.150}. Regarding the
evaluation on CPU, we used an Intel(R) Xeon(R) W-2145 @
3.70GHz.
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Fig. 3. Rate-distortion comparison on Kodak dataset.

Baselines.1 We compare our approach with the state-of-
art neural compression method SwinT-ChARM proposed
by Zhu et al. [17], and non-neural compression methods,
including better portable graphics (BPG)(4:4:4), and the most
up-to-date VVC official Test Model VTM-18.0 in All-Intra
profile configuration.

B. Rate-Distortion coding performance

To demonstrate the compression efficiency of our proposed
approach, we visualize the rate-distortion curves of our model
and the baselines on each of the considered datasets. Consid-
ering the Kodak dataset, Figure 3 shows that our ConvNeXt-
ChARM outperforms the state-of-the-art learned approach
SwinT-ChARM, as well as the BPG(4:4:4) and VTM-18.0
traditional codecs in terms of PSNR. Regarding rate savings
over VTM-18.0, SwinT-ChARM has more compression abili-
ties only for low PSNR values. Our model can be generalized
to high resolution image datasets (Tecnick, JPEG-AI, and
CLIC21), and can still outperform existing traditional and
the learned image compression method SwinT-ChARM in
terms of PSNR. Besides the rate-distortion curves, we also
evaluate different models using Bjontegaard’s metric [31],
which computes the average bitrate savings (%) between two
rate-distortion curves. In Table I, we summarize the BD-rate of
image codecs across all four datasets compared to the VTM-
18.0 as the anchor. On average, ConvNeXt-ChARM is able
to achieve 5.24% rate reduction compared to VTM-18.0 and
1.22% relative gain from SwinT-ChARM. Figure 1 shows the
BD-rate (with VTM-18.0 as an anchor) versus the decoding
time of various approaches on the Kodak dataset. It can be seen
from the figure that our ConvNeXt-ChARM achieves a good
tradeoff between BD-rate performance and decoding time.

1For a fair comparison, we only considered SwinT-ChARM [17] from
the state-of-the-art models [17], [19]–[23], due to the technical feasibility of
models training and evaluation under the same conditions and in an adequate
time.
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TABLE I
BD-RATE↓ PERFORMANCE OF BPG (4:4:4), SWINT-CHARM, AND

CONVNEXT-CHARM COMPARED TO THE VTM-18.0 FOR THE FOUR
CONSIDERED DATASETS.

Dataset BPG444 SwinT-ChARM ConvNeXt-ChARM

Kodak 20.73% -3.47% -4.90%
Tecnick 27.03% -6.52% -7.56%
JPEG-AI 28.14% -0.23% -1.17%
CLIC21 26.54% -5.86% -7.36%

Average 25.61% -4.02% -5.24%

TABLE II
IMAGE CODEC COMPLEXITY. WE CALCULATED THE AVERAGE DECODING
TIME ACROSS 7000 IMAGES AT 256×256 RESOLUTION, ENCODED AT 0.6

BPP. THE BEST SCORE IS HIGHLIGHTED IN BOLD.

Image Codec Latency(ms)↓ GFLOPs↓ #params(M)↓
GPU CPU

Conv-ChARM 124.32 967.43 117 123.84
SwinT-ChARM 102.45 1088.16 122 127.78
Ours 122.70 834.42 119 122.33

C. Models Scaling Study

We evaluated the decoding complexity of the three consid-
ered image codecs by averaging decoding time across 7000
images at 256×256 resolution, encoded at 0.6 bpp. We present
the image codec complexity in Table II, including decoding
time on GPU and CPU, floating point operations per second
(GFLOPs), the memory required by model weights, and the to-
tal model parameters. The models run with Tensorflow 2.8 on a
workstation with one RTX 5000 Ti GPU. The Conv-ChARM
model refers to the Minnen et al. [16] architecture with a
latent depth of 320 and a hyperprior depth of 192, and can be
considered as ablation of our model without ConvNeXt blocks.
We maintained the same slice transform configuration of the
ChARM for the three considered models. The total decoding
time of SwinT-ChARM decoder is less than ConvNets-based
decoder on GPU but is the highest on CPU. Our ConvNeXt-
ChARM is lighter than the Conv-ChARM in terms of the
number of parameters, which proves the ConvNeXt block’s
well-engineered design. Compared with SwinT-ChARM, our
ConvNeXt-ChARM shows lower complexity, requiring lower
training time with less memory consumption. In addition,
Figure 4 shows that our method is in an interesting area,
achieving a good tradeoff between BD-rate score on Kodak,
total model parameters, and MFLOPs per pixel, highlighting
an efficient and hardware-friendly compression model.

D. Comparison with SwinT-ChARM

ConvNeXt-ChARM achieves good rate-distortion perfor-
mance while significantly reducing the latency, which is po-
tentially helpful to conduct, with further optimizations, high-
quality real-time visual data transmission, as recently proposed
in the first software-based neural video decoder running HD
resolution video in real-time on a commercial smartphone
[32]. Since fewer works attempt to explicitly compare Swin
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Transformer and ConvNet-based blocks, here, we compare
our ConvNeXt-ChARM with SwinT-ChARM under the same
conditions and configurations. We found that a well-designed
ConvNet, without any additional attention modules, can out-
perform the highly coveted Swin Transformer in learned trans-
form coding in terms of BD-rate, with more visually pleasing
reconstructions and comparable decoding latency. In addition,
ConvNeXt-ChARM maintains the efficiency and maturity of
standard ConvNets and the fully-convolutional nature for both
training and inference. There is no doubt that Transformers are
excellent architectures with enormous potential for the future
of various computer vision applications. However, their vast
hunger for data and computational resources [33] poses a big
challenge for the computer vision community. Taking SwinT-
ChARM as an example, it needs, on average, ×1.33 more
time than ConvNeXt-ChARM, to train on the same number
of epochs.

IV. CONCLUSION

In this work, we reconcile compression efficiency with
ConvNeXt-based transform coding paired with a ChARM
prior and propose an up-and-coming learned image com-
pression model ConvNeXt-ChARM. Furthermore, we inherit
the advantages of pure ConvNets in the proposed method to
improve both efficiency and effectiveness. The experimental
results, conducted on four datasets, showed that our ap-
proach outperforms previously learned and conventional image
compression methods, creating a new state-of-the-art rate-
distortion performance with a significant decoding runtime
decrease. Future work will further investigate efficient low-
complexity entropy coding approaches to further enhance
decoding latency. With the development of GPU chip tech-
nology and the further optimization of engineering, learning-
based codecs will be the future of coding, achieving better
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compression efficiency when compared with traditional codecs
and aiming to bridge the gap to a real-time operation. We
hope our study will challenge certain accepted notions and
prompt people to reconsider the significance of convolutions
in computer vision.
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Abstract— The accuracy of MRI-based diagnosis can be 

degraded by artifacts, a challenging problem for both radiologists 
and automated computer-aided systems. Assessment of MR images 
quality is thus of paramount importance for clinical and research 
purposes. In this brief review, I discuss image quality assessment 
(IQA) methods for MRI. After briefly describing some typical 
artifacts encountered in MRI, a succinct summary of popular IQA 
metrics is provided. A particular emphasis is put on the relevance of 
current IQA metrics, borrowed from existing IQA methods for 
natural images, when dealing with MR images with diverse 
contrasts and artifact types. In the IQA process, what matters for 
clinicians is not whether an MR image is beautiful or not but whether 
the clinically-relevant diagnostic pattern in the MR image is 
unaffected by artifacts. I then discuss the growing interest in AI-
based as well as brain-inspired IQA methods, including their 
strengths and limitations.  The possibility of integrating IQA metrics 
within AI image reconstruction and processing tools will have major 
ramifications on IQA for MRI. Challenges and promises are finally 
discussed in the light of the recent trends in scanning patients at 
ultrahigh (≥7 Tesla) or at ultralow (≤0.1 Tesla) magnetic fields with 
portable MRI devices.  

Keywords— MRI, artifacts, image quality, contrast, signal, 

noise, distortions, motion, AI, MR sequence, field strength.  

I. INTRODUCTION 

MRI is widely used in clinical and research settings for 
both diagnostic and prognostic purposes. With a strong static 
magnetic field, combined with radiofrequency pulses and 
spatially variable magnetic gradients, different contrast 
images can be generated of the soft tissue of the human body. 
High quality MR image acquisition requires highly 
homogenous magnetic fields. However, inhomogeneities 
caused by different sources yield visible artifacts that can 
lessen the quality of MR images. Such artifacts can lead to 
geometric distortions, inaccurate contrast distribution, 
variable signal intensities across the image, and signal loss. 
Such artifacts can negatively impact upon the diagnostic 
potential of MR images, and hence different correction 
techniques are commonly used to reduce artifacts during 
(prospective) or after (offline) acquisition. Indeed, there is a 
rich literature that is interested in the development of 
processing methods towards artifact-free MRI. One question 
of paramount importance in this literature is the possibility to 
objectively assess the quality of MR images, as discussed in 
this brief review. The examples provided here are mainly 
taken from the domain of neuroimaging, though they are also 
valid for MR images of other body parts.  

Raw MRI data are typically collected in a spatial 
frequency-based space called the k-space (Figure 1). 
Depending on how the k-space is sampled and reconstructed, 
methods based on Fourier transform are used to transform the 
k-space data into a real MR image. Each pixel of an MR image 

is by construction a weighted sum of all the individual points 
in the k-space. Image contrast and low signal variations are 
coded in central regions of the k-space, whereas sharp 
intensity transitions and edges are coded in peripheral regions 
of the k-space (Figure 1). Accordingly, as each point of the k-
space contributes to the entire MR image, any mislocalization 
of points in the k-space will translate into artifacts [1]. 
Strategies have been suggested to reduce artifacts directly in 
the k-space (e.g. [2, 3]. However, in the context of image 
quality assessment (IQA), methods have exclusively been 
developed and tested on real MR images.  

One critical aspect for IQA concerns the estimation and 
modelling of MRI noise type and intensity. Noise in MRI in 
single-coil acquisitions is mainly governed by a Rician 
distribution at low signal-to-noise ratio (SNR) but behaves 
like Gaussian noise at high SNR [4]. Noise estimation for 
multiple-coil acquisitions and parallel imaging protocols uses 
the noncentral chi model [5]. Many parameters in the MRI 
acquisition sequence have direct impact on SNR [6]. For 
dynamic acquisitions in functional or perfusion MRI (i.e. 4D 
data), different metrics have been put forward, including the 
concept of temporal SNR as a useful metric of timeseries 
quality [7, 8].  

 

Figure 1: (A) k-space is an array of spatial frequencies. Each 
point of the k-space represents a collected intensity at a given spatial 
frequency. The points in k-space are acquired through frequency 
encoding and phase encoding steps. MR image of the scanned part is 
directly obtained with a Fourier transform. Inaccurate sampling of the 
k-space translates into artifacts in the real MR images. (B) the center 
of the k-space codes low frequencies (image contrast) and the 
periphery of the k-space codes high frequencies (image edges and 
sharp transitions).  

II. ARTIFACTS IN MRI 

Below, I succinctly describe ten main artifacts in MRI; 
more details can be found elsewhere [9-13]. These artifacts 
might be due to the scanner (inhomogeneity in the static 
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magnetic field, software errors), hardware (suboptimal 
gradients, malfunctioning RF coils), sequence type (some 
sequences are more prone to artifacts than others), or other 
patient factors (tissue heterogeneity or movement) [14]. 
Figure 2 illustrates some common artifacts.  

 

Figure 2: (A) aliasing artifact (adapted from Radiology_study); 
(B) motion artifacts (see the MR-ART dataset), (C) Nyquist N/2 
ghost, (D) signal loss; (E) blooming effect (adapted from 
radiopaedia); (F) bias field artifact. 

Aliasing artifacts: This artifact typically occurs when the 
dimensions of the imaged object exceed the selected field of 
view [15]. The part of the body that is outside the field of view 
is projected onto the other side of the image.  

Truncation artifacts: also known as Gibbs artifacts, they 
manifest as multiple fine parallel lines adjacent to high-
contrast interfaces [16]. They can be seen for example in 
spinal MRI as artifactual false widening of the edges at these 
high-contrast interfaces, or edge enhancement of the interface 
and distortion of tissues immediately adjacent to the high-
contrast interface. They result from the application of 
truncated Fourier transform to reconstruct the MR signals.   

Nyquist N/2 Ghost: This artifact is commonly seen with 
echo-planar imaging (EPI) sequences. Slight timing 
differences between peaks of odd and even echoes can lead to 
an aliased ghost halfway across the image [17]. Poor 
shimming, gradient coil heating and eddy currents can result 
in Nyquist ghosts. 

Motion artifacts: they appear like blurring or ghosting 
caused by subject motion, breathing, or cardiac pulsations 
[18]. It is one of most frequent artifacts that can affect all 
sequence types in the presence of movement from the subject. 
They are very common in particular when scanning vulnerable 
clinical populations (epileptic patients, stroke patients, very 
young children, seniors with dementia…etc).  

Susceptibility artifacts: they reflect distortions due to local 
magnetic field inhomogeneities [19]. One classic example is 
imaging near metallic orthopedic or dental implants. The 
magnetic field distortions created by susceptibility effects 
result in frequency changes that, in turn, produce a signal loss.  

Blooming artifact: is a type of susceptibility artifact seen 
in with some MRI sequences in the presence of paramagnetic 
substances. For instance, blooming can be seen surrounding 
calcifications or hemosiderin from prior hemorrhage. This 
artifact may sometimes lead to tissue signal cancellation and 
loss of anatomical borders.  

Geometric distortion: They can arise from a variety of 
sources, including tissue-dependent chemical shift, 
susceptibility differences, gradient field nonlinearity and the 
static field inhomogeneity. This artifact can reduce spatial 
fidelity, due to a geometric offset of the voxel’s representation 
in the image space, which can directly introduce spatial 
inaccuracies in tissue localization and delineation [20].  

Intensity inhomogeneity (bias field) artifact: This artifact 
can lead to undesirable intensity variations across the image 
in tissues having the same physical property, which may 
hinder the accuracy of tissue segmentation [21]. It commonly 
refers to a very smooth and/or low-frequency variation that 
can corrupt MR images.  

Partial volume effects: these are notoriously difficult to 
assess or correct and are particularly challenging for tissue 
segmentation techniques [22]. They are present at the voxel 
level when more than one tissue type occurs in a given voxel. 
They occur when the voxel size is larger (low spatial 
resolution) than the size of tissue variation in the image.   

Poor signal-to-noise ratio (SNR): SNR is an important 
factor that determines the quality of an MR image. Poor SNR 
can lead to poor sensitivity and low differentiation of tissue 
types. Factors such as acquisition duration and voxel size have 
direct impact on SNR [23]. For instance, poor SNR is a 
limiting factor in MRI at ultralow fields. As discussed below, 
noise estimation in MRI is not a straightforward question as 
many factors have direct impact on the exact modelling of 
noise in MR images, including the type of contrast, sequence 
parameters, single versus multi-coil acquisition, and type of 
imaging acceleration [6, 24, 25].    

 In sum, MRI offers a powerful framework to display soft 
tissue at different contrasts using tailored MR sequences. 
Figure 3 illustrates some of the most common MR contrasts 
used in clinical neuroimaging. These MR images at different 
contrasts are sensitive to different types of artifacts. Some 
artifacts are more severe in some MR contrasts than others. 
For example, geometric distortions might be more pronounced 
in diffusion imaging than other contrasts, whereas Nyquist 
N/2 artifacts is more common when collecting T2*-weighted 
images with EPI-type sequences. The choice of the optimal 
IQA protocol thus depends on which MR contrast (i.e. 
sequence) is of interest to the user. 

III. IMAGE QUALITY ASSESSMENT (IQA) 

In the clinical setting, it is not unusual that patients are 
asked to repeat scans when artifacts are detected in the 
acquired MR images. Those images affected by artifacts 
require extensive preprocessing to improve quality, making 
them very challenging for existing automated diagnostic tools. 
Hence, there is a need to assess, qualitatively or quantitatively, 
the quality of collected MR images before carrying out any 
subsequent processing or analysis. In this section, I will 
describe some popular IQA approaches that have been used 
on MR images. The exact mathematical formulations of IQA 
metrics are not covered in this brief review. 

The gold standard IQA approach still relies on the 
subjective assessment made by experts to rate or rank the 
quality of MR images. For example, experts can label a given 
MR image as of good quality with less geometric distortions 
or with no apparent head motion artifacts. This is typically 
based on prior knowledge about how artifacts manifest 
themselves in MR images. However, subjective IQA has 
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many limitations [26, 27]: it is time consuming, expensive, 
operator-dependent, and not practical for the evaluation of 
large MRI datasets. Perhaps most importantly, although many 
IQA tools for natural images have been successfully 
introduced into MRI, what matters for clinicians is not 
necessarily whether an MR image looks beautiful or nice (i.e. 
a perceptual quality) but whether the image’s features are 
clinically useful for accurate diagnosis. For instance, a 
diffusion-weighted image (DWI) might look of poor quality 
compared to a high-resolution T1-weighted image, but a DWI 
image is more useful for clinicians in the diagnosis of acute 
stroke lesions. This point is critical when it comes to the 
design of optimal IQA for MR images, given that quality 
varies with the MR contrast of interest. This point is central to 
any discussion about IQA for MRI because ‘quality’ here 
would basically mean that the relevant diagnostic pattern in 
the MR image is not altered by any present artifact. This issue 
is sometimes overlooked in current literature that borrowed 
IQA metrics from natural images to MR images.  

 

Figure 3. Some common MR contrasts. (A) T1-weighted image, 
(B) T2-weighted image, (C) fluid attenuated inversion recovery 
(FLAIR)-weighted image, (D) apparent diffusion coefficient (ADC)-
weighted image, (E) susceptibility-weighted image, (F) proton 
density-weighted image, (G) diffusion-weighted image, (H) T2*-
weighted image with EPI, (I) magnetization transfer-weighted image. 
Importantly, type and severity of artifacts vary with MR contrast. 

In this context, there is a need to develop objective 
measures of IQA to automate screening and reduce reliance 
on human raters [28]. One of the early IQA frameworks in the 
context of medical imaging is what is known as model 
observers [29], used as objective alternatives to human 
observers. The models based on statistical decision theory, 
including for instance the ideal Bayesian observer and the 
optimum linear discriminator (Fisher-Hotelling) model, can 
predict performance for clinical classification and estimation 
tasks [30]. They rely on both mathematical modelling and 
psychophysical considerations in designing both optimal 
observers (for optimizing medical imaging systems) and 
anthropomorphic observers (for modeling human observers); 
for review see [31, 32]. As task-based approaches, these 
model observers are still attracting interest in the field for the 
development of optimal IQA protocols [33-35]. However, 
they usually lead to an overall outcome without the separation 
of the image quality parameters (see discussion in [36]). 

Objective IQA can be divided into different categories 
depending on whether a reference (pristine) image is available 
or not: (i) full-reference IQA (FR-IQA) requires the 
availability of a reference image, (ii) reduced-reference IQA 
(RR-IQA) requires the availability of some features extracted 
from a reference image, and (iii) no-reference IQA (NR-IQA), 
sometimes referred to as blind IQA, which can assess image 
quality without a reference image. The vast majority of IQA 
algorithms belong to FR-IQA type. Others have suggested (iv) 
a relative IQA framework based on ranking quality scores 
instead of absolute quality scores per se, a framework that has 
been shown to be useful for MR images collected with 
susceptibility weighted imaging protocols (e.g. [37, 38]. 
Below, I provide a brief introduction of both FR-IQA and NR-
IQA; more details can be found elsewhere (cf. [39-41]).  

A. Phantom imaging for FR-IQA:  

Phantom imaging is a common protocol to evaluate, 
calibrate, and tune the performance of MRI scanners, 
including the analysis of scanner-related artifacts. It is based 
on imaging a standard phantom that is stable and having well-
defined properties to allow monitoring of scanner 
performance and accuracy of image-based measurements. For 
instance, imaging phantoms is used to assess SNR, size of 
geometric distortion, signal drift for 4D acquisitions as in 
functional or perfusion MRI, and/or the size of bias field with 
different types of coils [42]. Following the American College 
of Radiology Phantom Test Protocol, MR phantom-based 
assessment can gauge the following features: geometric 
accuracy, high-contrast resolution, slice thickness accuracy, 
slice position accuracy, image intensity uniformity, percent 
signal ghosting, low-contrast object detectability, SNR and 
central frequency monitoring [43]. Customized phantoms can 
also be used to assess the size of geometric distortions even at 
the sub-millimetric level, for instance by calculating the 
difference between specific points in the acquired MR images 
against the true physical features of the same points in the 
phantom [44, 45]. Phantoms are very handy as they provide a 
reference image to which the quality of acquired MR images 
can be compared to, hence enabling the application of FR-IQA 
methods. Interestingly, there are other advanced types of 
phantoms like anthropomorphic brain phantoms [46, 47] that 
offer a realistic depiction of tissue classes, which could 
improve the IQA process for diverse neuroimaging 
applications. 

There are more than 100 FR-IQA metrics, so it is beyond 
the scope of this brief review to comprehensively appraise 
their applicability or relevance to MRI. They include for 
instance some classic metrics such as mean square error 
(MSE), peak signal-to-noise ratio (PSNR), contrast-to-noise 
ratio (CNR), and structural similarity index measure (SSIM) 
[37, 48, 49]. FR-IQA can be classified further into different 
families depending on their mode of operation [40, 50]. Other 
recent IQA methods have shown both high accuracy and 
robustness that would make them suitable to MR images (e.g. 
[51, 52]).  

A comparison between 43 FR-IQA methods [40] on 
different datasets illustrates the complexity of the IQA process 
depending on what artifacts are preponderant in the images of 
interest. For instance, a recent comparison on MR images [41] 
reported that some FR-IQA methods performed better than 
other methods, including the visual saliency-based index.  
Despite FR-IQA metrics being easily quantifiable and 
interpretable, the availability of a reference image in MRI is 
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not always possible. For example, some MR contrasts exploit 
inherent artifacts in the acquired images to distinguish normal 
versus abnormal tissue in patients, e.g. susceptibility artifacts 
as a proxy for the detection of cerebral microbleeds when 
using susceptibility-weighted imaging. This makes the 
distinction between what is artifact and what is relevant signal 
extremely hard to replicate with standard phantoms. This issue 
highlights the importance of alternative NR-IQA methods.  

B. No-reference image quality assessment (NR-IQA): 

There is a huge interest in developing NR-IQA approaches 
that do not require a reference image. These methods can 
deliver competitive performance as compared to subjective 
assessments by human experts [53, 54]. One classic example 
is the use of SNR [55] as a quality indicator to flag up MR 
images of bad quality [56, 57]; low SNR values would indicate 
poor image quality. The ratio between signal and noise can be 
calculated in two ways in MRI, assuming a spatially 
homogeneous distribution of noise over the whole image: (i) 
by defining two regions of interest (ROI), signal is set to the 
average intensity in the ROI of interest (e.g. brain tissue) and 
noise is set to the standard deviation of pixels intensity in a 
background ROI, or (ii) using two identical (repeated) images 
of the brain, signal is defined as the average intensity in the 
ROI in the first image and noise as the standard deviation of 
the pixels inside the same ROI of the difference between the 
two images. Some studies have shown that SNR measures 
using the two-ROI approach for MRI are not valid unless the 
statistical intensity distribution of the background noise 
follows a Rayleigh distribution [6].  

Similar to SNR, other alternative metrics were developed. 
For instance, Mortamet et al. suggested a metric based on the 
analysis of a single ROI in the background air region of a brain 
MR image [58]. Specifically, after delineating the background 
ROI, a model-free quality index is assessed and subsequently 
combined with another index that examines the noise intensity 
distribution by fitting a noise model [58]. The usefulness of 
this methods has been tested on a large dataset with structural 
MR images. Other NR-IQA metrics were directly compared 
to SNR on MR images, including indicators such as 
BLIINDS-II [59] and BRISQUE [60], and were shown to be 
accurate and robust (see empirical evidence in [56]). 

NR-IQA methods can be grouped [40] into different 
families. They were compared on different datasets [40], 
showing for instance a superiority of the codebook 
representation for no-reference image quality assessment 
(CORNIA) method for different types of artifacts. In another 
systematic comparison of >200 methods, NR-IQA methods 
were able to reliably discriminate between undistorted MR 
images versus MR images contaminated with either noise or 
distortion [28], though their performance varied with the type 
and level of distortion.  Similarly, other alternative methods 
based on the examination of images statistical features and 
local texture showed promising results on MR images [61-63].  

It is worth noting that the majority of NR-IQA methods 
were mainly tested on structural MRI images with very few 
applications to other MRI domains such functional and 
perfusion imaging. I also note that the performance of NR-
IQA methods strongly depends on the type of the artifact and 
its severity, and there is no single NR-IQA technique that can 
handle diverse artifacts across many MR contrasts. For 
instance, some of NR-IQA metrics can be optimal for 
identifying scanner-related artifacts but might not be optimal 
for patient-related artifacts. Last but not least, some of NR-

IQA methods presumably rely on prior knowledge about  
image features (e.g. location of a given brain tissue as an ROI 
versus background), making them more likely to operate as 
RR-IQA methods. In the light of these challenges, I briefly 
discuss in the next paragraph what AI can bring to the table.  

IV.  AI-BASED IQA  

AI has opened new opportunities to automate the IQA 
process, taking advantage of the existence of annotated data 
[64-70]. Such AI tools, including deep learning methods, can 
classify images into good versus poor quality images after 
learning from images with known labels; for review see [71]. 
Popular AI architectures for IQA include convolutional neural 
networks (CNN) [65, 72-74], and end-to-end AI-based 
solutions to IQA already exist (e.g. [75, 76]).  

AI-based IQA techniques, evaluated on MR images [77-
80], were found to be in good agreement with human expert 
evaluation (see discussion in  [54]). AI-based IQA tools are 
typically designed for one specific type of artifacts in MR 
images (e.g. motion artifacts [81, 82]). Despite their huge 
potential for IQA, they pose many challenges. First, IQA 
methods based on deep learning require copious amounts of 
annotated data, which might not be available for all types of 
artifacts or MR contrasts. Second, the implementation of a 
variety of neural network architectures entails sophisticated 
hyperparameters optimization procedures in the search 
hyperspace. Such optimization of parametrization is 
fundamentally an empirical question that depends on data, 
thus making the generalizability of designed architectures to 
other MR data a difficult question (e.g. data collected with 
other scanners or with different sequences). Third, many of 
existing AI-based IQA methods operate on 2D mode, which 
can hamper their effectiveness for the detection of 
heterogenous artifacts that extend across multiple slices in the 
collected 3D volumes. Extending to 3D inputs however 
increases dramatically the complexity of AI architectures.  

Furthermore, the performance of AI methods might be 
bounded by the image quality criteria used by the human 
experts, which raises questions on how to deal with 
uncertainty in the definition of the labels (ground-truth) during 
the training phase. Likewise, class imbalance is another 
challenge as some artifacts might occur less frequently than 
other artifacts. Moreover, artifacts in MRI are underpinned by 
different interacting sources where the severity of an artifact 
might also be exacerbated by the presence of another artifact 
(e.g. the presence of motion can worsen geometric 
distortions), which might affect the performance of AI tools 
for multiclass problems. These methodological issues warrant 
future research before AI-based IQA tools can be considered 
robust IQA methods for MRI. Perhaps most importantly, MRI 
developers are already integrating AI capabilities into their 
image preprocessing and reconstruction platforms, making the 
quality assessment process an inherent part of the whole 
acquisition protocol. This will likely accelerate the 
development of AI-based IQA methods that are compatible 
with existing AI image reconstruction tools.       

V. BRAIN-INSPIRED IQA  

To mimic the role of human experts in subjective IQA, it 
would make sense to develop IQA methods based on how the 
visual system processes information [83-86]. Several 
functional properties of the human visual system were 
incorporated in the design of IQA methods, including human 
visual sensitivity [87], low-level features [88], receptive fields 
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representations [89], frequency and spatial features [90, 91], 
and multi-channel processing modes [74].  

 

Figure 4: A schematic illustration of how vision works (see for 
more details [83]): low-level to high-level processes, through multi-
resolution representations with increasing receptive fields size, based 
on segmentation and grouping mechanisms, across functionally 
specialized areas, via parallel but interacting streams, ensuring 
invariance to visual transformation, preserving chromatic 
appearance, and ensuring coherence with prior knowledge during 
object recognition. Object recognition is the sum of both bottom-up 
(feedforward) and top-down (feedback) inputs, based on the physical 
properties of the visual stimulus (e.g. signal intensity and spatial 
frequency in the MR image) and prior knowledge about MR images 
(expected contrast and location of brain tissue classes). 

There is a huge neuroscience literature about the structure 
and function of the human visual system, highlighting its 
hierarchical organization and its subdivision into specialized 
modules or areas [92]. Below is a selective list of ten 
characteristics of the human visual system (Figure 4): (i) a rich 
connectivity from the retina, to the lateral geniculate body, to 
the primary visual cortex and other higher visual cortices, 
involving complex feedforward and feedback interactions (ii) 
retinotopic organization in different visual areas, implying 
that neurons with receptive fields close together in the visual 
field are also close together in the cortex, (iii) neurons in visual 
areas (in particular in low-level areas) are sensitive to 
orientation, (iv) cortical magnification, with large cortical  
representations of central (foveal) compared to peripheral 
regions, (v) size of receptive fields increases from low to high-
level visual areas, yielding multiresolution integrated 
representations of the presented image, (vi) contrast 
sensitivity varies across visual areas, with the ability of the 
system to preserve the chromatic appearance of the presented 
image, (vii) different functional specialization across visual 
areas, with some areas responding preferably to different 
physical properties (e.g. area V5/MT for motion, area V4/V8 
for color processing), (viii) spatial (and temporal) features of 
the presented image implicate relatively different 
parvocellular and magnocellular pathways, (ix) responses in 
different areas are strongly modulated by visual attention, and 
(x) image recognition involves complex interplay between 
top-down and bottom-up interactions.  

Not all properties of the visual system can be easily 
translated into IQA metrics. Thus, rather than considering 
each functional or structural property of the human visual 

system separately, it would make sense to take a more holistic 
view in terms of organizational principles. For example, the 
visual system can be modeled as an inferential system that 
aims to give sense to sensory inputs, a system that can learn 
and update its prior knowledge, while entertaining complex 
spatiotemporal interactions with other systems such as the 
semantic memory system, spatial attention, oculomotor 
system, the salience network, decision making, and other 
domain-general executive functions (Figure 4). One 
organizational principle relevant to this framework is the free 
energy principle [93]. This principle offers a unified theory to 
explain perception, learning and action. More specifically, it 
offers a generalization of (i) the Bayesian brain hypothesis 
with the brain as an inference machine that actively predicts 
and explains its sensations, (ii) the infomax principle about 
neuronal activity encoding sensory information in an efficient 
and parsimonious fashion, and (iii) that perception is an 
inevitable consequence of active exchange with the 
environment. The free energy principle assumes that an agent 
must have an implicit generative model of how causes 
produce sensory data [93]. For the human visual system, one 
can assume a system that integrates two sets of inputs: (i) 
generated prediction errors at low-level areas conveyed with 
forward driving connections, and (ii) constructed predictions 
at higher areas conveyed with backward connections. The 
ultimate goal is to use these predictions to explain away 
prediction errors in low-level areas (Figure 5).  

 

Figure 5: A schematic illustration of the interplay between 
predictions (red arrows) and prediction errors (blue arrows). 
Predictions are constructed according to an internal generative 
model. According to the free energy principle [93], action can reduce 
free-energy (i.e. prediction errors) by changing sensory input, 
whereas perception reduces free-energy by changing predictions.  

Therefore, and following Friston’s discussion of 
hierarchical models of sensory input [93, 94], it is possible to 
define IQA as a process that suppresses free energy. Here, the 
(input) data are the MR images and the (generative) model 
encodes how a typical artifact-free MR image should look like 
for the IQA process. Accordingly, an MR image with artifacts 
would be expected to increase prediction error (i.e. increase 
surprise). As discussed by Zhai and colleagues [95], one 
critical step in the design of IQA methods inspired by the free 
energy principle is the definition of the internal generative 
model. An optimal generative model should be able to 
approximate any given visual input with high precision [95]. 
Previous studies have suggested a couple of free-energy based 
IQA metrics [96-99], using in particular an autoregressive 
model as a generative model despite its high computational 
cost [95]. However, their usefulness and robustness for MRI 
have yet to be evaluated in a systematic way. Given the 
diversity in contrasts and artifacts in MRI, it would make 
sense to design free-energy inspired IQA methods specific to 
each artifact type. This is because a single generative model 
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that can understand such variety in MR contrasts and artifacts 
might be computationally impractical. This issue warrants 
future research.     

VI. IMPLICATIONS FOR MRI AT ULTRALOW AND 

ULTRAHIGH MAGNETIC FIELDS  

One emerging trend in neuroimaging with MRI is the 
possibility to scan patients at ultralow (<0.1 Tesla) or 
ultrahigh (>7 Tesla) magnetic fields. As severity and 
occurrence of different artifacts can vary with magnetic field 
strength, it is likely that current IQA methods, in particular 
NR-IQA and AI-based IQA methods, developed and tested on 
MR images collected at traditional field strengths (i.e. 1.5T 
and 3T), might not be applicable at ultralow or ultrahigh 
fields. A search in current literature shows that there is no 
systematic examination of IQA metrics on MRI images 
acquired at either ultralow or ultrahigh fields. Below, I 
describe what is so special about MRI at such field strengths. 

   MRI at ultrahigh fields is gaining in popularity, as it can 
increase SNR [100, 101]. High SNR offers the possibility to 
increase spatial resolution, yielding MR images at the 
submillimeter level; see for example recent development in 
layer-specific functional MRI. However, the downside is the 
increase in susceptibility artifacts with field strength, resulting 
in strong geometric distortions that are notoriously difficult to 
correct. Such distortions deteriorate with large head motion 
artifacts in patients and they tend to be spatially heterogenous, 
e.g. severe distortions in brain areas around air cavities [102]. 
IQA methods should thus be sensitive to the inherent 
heterogenous spatial distortions at ultrahigh fields. They could 
potentially be combined with recent AI tools that were 
implemented for susceptibility artifacts correction [103-105]. 
Furthermore, high-resolution MRI at ultrahigh fields will 
generate large images that are not always easy to handle with 
current IQA methods. For instance, a high-resolution 
anatomical image collected at 0.1 mm resolution took almost 
2TB of raw k-space data [106], a storage size that needs to be 
multiplied by many folds when dealing with data from a large 
number of subjects. Computationally efficient IQA methods 
are thus needed for MRI at ultrahigh fields. This is an 
important issue as magnetic field strengths are expected to go 
even higher in the next decade [107]. 

Likewise, at the other end of the spectrum, MRI at ultralow 
fields is gaining in popularity, thanks to the emergence of 
portable MRI scanners [108, 109]. For instance, images 
collected with a low-field portable MRI (0.064 Tesla) were 
shown to be clinically useful for the evaluation of intracerebral 
hemorrhage [110]. However, as MRI signal decreases with 
magnetic field strength, MR images collected at ultralow 
fields have very poor SNR. Other limitations also include poor 
spatial resolution and reduced contrast between gray and 
white matter tissue [111]. A poor SNR would be a challenge 
for many IQA methods, in particular for NR-IQA methods 
including AI-based methods. More specifically, poor SNR 
may mask the manifestation of some subtle artifacts, making 
them very hard to spot with typical NR-IQA metrics. This 
domain is still in its infancy, and thus new IQA metrics are 
needed in the near future to assess MR images collected with 
portable MRI scanners at ultralow magnetic fields.     

VII. CONCLUSION  

Poor quality MR images can lessen diagnosis accuracy 
and increases costs of repeated scans. The majority of IQA 
methods for MRI were borrowed from existing methods 

developed for natural images. Consequently, many IQA 
methods are agnostic to the type of contrast and texture that 
specifically characterize MR images. In addition to FR-IQA 
methods that can be part of typical phantom imaging 
protocols, NR-IQA methods including AI-based methods are 
highly valuable. There is currently a growing interest in 
developing AI-based IQA methods that can be integrated or 
combined with AI image reconstruction and processing tools. 
This endeavor will be facilitated by recent initiatives to share 
large annotated datasets; see for example the MR-ART dataset 
about motion artifacts [112]. However, it is important that 
researchers adhere to current best practices when developing 
AI methods and reporting findings in order to improve 
reproducibility and replicability (e.g. see guidelines in [113, 
114]). Similarly, new IQA metrics inspired by how the brain 
processes information will open new avenues for informed 
IQA metrics, including for instance methods based on the free 
energy principle. One aspect not particularly emphasized in 
this brief review is IQA for multimodal MRI. Image quality 
varies with MR modality, hence optimal IQA for multimodal 
MRI can either exploit variability (between-modality 
differences) or complementarity (image fusion techniques) 
across modalities [115]. Last but not least, tailored IQA 
methods for MR images acquired at ultralow or ultrahigh 
magnetic fields warrant future research.  
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Abstract—Finding the optimal balance between reducing ra-
diation risk for patients and preserving image quality in CT
imaging remains a challenging task. To explore the impact of
lower radiation doses on CT image quality, the simulation of
low dose CT images is highly demanded. Traditional methods
often rely on generating Gaussian/Poisson noise on raw data
using mathematical models for specific scanners, which requires
access to many medical resources. Inspired from image denoising
models, we propose two deep learning models (ResNet and U-
Net) for low dose CT images simulation, among which the U-Net
model demonstrated better performance. Moreover, the trained
U-Net model proves its applicability to untrained CT images
from various scanners, showcasing its potential as a versatile
and generic low dose CT simulation tool. By bypassing the need
for complex phantom experiments and mathematical modeling,
deep learning for low dose CT simulation emerges as a promising
and powerful approach, akin to solving the inverse problem of
well-established image denoising techniques.

Index Terms—Deep Learning, Image Processing, Computed
Tomography

I. INTRODUCTION

X-ray Computed Tomography (CT) is an advanced medical
imaging technology that offers detailed 3D visualization of
the human body, providing rich diagnostic information. With
its principle of detecting the attenuation of the 360 degree
rotating X-Ray when passing tissues with different densities
during a continuous time, the patients receive about 100 to 500
times more radiation dose than in convention X-ray [1]. Thus,
strict protocols exist for all CT exams, which is a difficult
compromise between the quality and the radiation risk. Is it
possible to reduce radiation dose while maintaining diagnostic
quality? What is the lowest dose level at which CT scans
can reliably characterize specific pathologies? These questions
remain unanswered. Consequently, low dose CT (LDCT) is
undoubtedly indispensable in the pursuit of balancing radiation
exposure and diagnostic quality.

Regarding the difficulty and restriction of conducting mul-
tiple dose CT scans experiments in clinics, developing con-

venient and reliable LDCT simulation tools becomes a cru-
cial need. Traditionally, the addition of Gaussian or Poisson
noise to raw data has been employed to generate degraded
sinograms, specifically tailored to the characteristics of a
particular CT scanner. The resulting reconstructed noisy image
is then considered as the simulated LDCT [2]–[4]. Recent
advancements have brought forth simulation methods in the
image domain that no longer require access to raw CT data.
These methods can be categorized into two approaches, based
on how they generate noise associated with the degradation
of LDCT images compared to normal dose images. The
first approach involves direct noise estimation in the image
domain [5], [6], and the second one entails reconstructing
noise from simulated noise sinograms [7]. Both approaches
rely on intricate mathematical models, necessitating a series of
blank scans or even phantom experiments, whose complexity
and specificity actually limit their generic application.

When those direct methods for LDCT simulation are unreal-
izable, can we simulate these LDCT in another way? Inspired
from abundant studies of LDCT denoising / reconstruction
[8]–[12] where the LDCT is considered as the noisy ver-
sion of high dose ones (HDCT), we had the idea to treat
this simulation problem as the inverse problem of denoising
problem. Denoising methods can be broadly divided into two
groups: model-based optimization methods and convolutional
neural network (CNN)-based methods [13]. Among these, we
are particularly interested in CNN-based methods considering
our limited resources. Firstly introduced by He in 2016 [14],
residual learning has been successfully applied to denoise
both natural and medical images [15], [16]. While U-Net
is predominantly known for image segmentation [17], it has
recently gained increasing attention in the field of image
denoising as well [18], [19].

In 2021, Niu et al. proposed a Noise-Entangled Generative
Adversarial Network (NE-GAN) to simulate LDCT from
HDCT, where the noise image generated from HDCT are
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scaled and added to the latter ones to form the simulated
LDCT [20]. This is the first study which applied this inverse-
denoising principle for LDCT simulation with satisfactory
results. However, this study has been conducted on a simple-
source dataset, where all CT images were collected at the
same time by the same scanner [21], the reproducibility of this
method is then not sure; besides, the results were presented
only visually, have not been evaluated in a more objective way.

In this paper, we employed two types of CNN models,
Deep Residual Network (ResNet) and U-Net, which give most
interesting results among many denoising models we have
experimented, for our LDCT simulation; then we have suc-
cessfully developed a generic LDCT simulation tool based on
the best-performance trained model. The code and the example
of dataset are available on GitHub 1. Our contributions are
demonstrated in two aspects: First, validated the possibility
to treat the LDCT simulation problem as inverse problem of
image denoising, by transforming two commonly-used deep
learning (DL) denoising models as LDCT simulation models.
Second, proposed a generic DL-based LDCT simulation tool,
which is applicable for any CT scans, without knowing the
parameters of scanners. To our knowledge, this is one of the
earliest works on this specific subject.

II. METHODS AND MATERIALS

Fig.1 illustrates the workflow of our study, consisting of two
main stages: I. Model Training: two DL networks inspired
from denoising models are experimented to realize the low
dose simulation task on CT images of one healthy sub-
ject (Subject 0); II. Model Application: the best-performance
trained model is employed to simulate desired low dose image
for any patient X (different than the subject 0 in model training
stage).

Fig. 1: Workflow of proposed low dose simulation model

A. Dataset

The dataset is retrospectively collected from Nantes univer-
sity hospital, composed of two parts: Part I, CT scan of subject
0, a healthy subject, containing both the normal and low dose
images; Part II, multi-sources CT scans from 77 patients with
adrenal lesion, containing only the normal dose images.

The healthy subject underwent examinations with two dif-
ferent tensions: 120 KVp and 80 KVp, referring to nor-
mal dose CT (NDCTs) (computed tomography dose index,
CTDI=10.8), and LDCTs (CTDI=7.7). This experiment has

1https://github.com/LumiereSummer/LowDoseSimulation

been conducted by an experimented radiologist and in ac-
cordance with ethical standards, thereby without any ethical
concerns. As a result, Part I dataset consists of 227 axial
CT images (dimension 512*512 pixels, 1mm thickness, using
non-contrast enhanced sequence, 80 multidetector CT, Aquil-
ion PRIME, Canon Medical Systems Corporation, Otawara,
Japan). We obtained 109 pairs of NDCT and LDCT images
by matching their slice locations as recorded in the metadata.
Among these pairs, 87 were used for training data, and 22
were used for testing. Before feeding them into CNN models,
all images were divided into 64x64 patches.

The CT scans in Part II were collected from anonymized
adrenal lesion patients across different years (2005-2022) and
were conducted by various scanners, as shown in the Table.I.

TABLE I: CT scanners used in Dataset part II

Manufacturer Model Name Number of patients

SIEMENS Sensention 16 15
SOMATOM Definition AS 3

GE
MEDI-
CAL
SYSTEMS

LightSpeed VCT 8
BrightSpeed 8
BrightSpeed QX/i 3
Optima CT660 3

TOSHIBA Acquilion PRIME 28
PHILIPS Ingenuity Flex 7

B. Deep Learning Models

1) ResNet denoising model: Inspiring from a ResNet de-
noising model for natural image denoising [22], we applied a
network with n residual blocks on our dataset, with NDCTs as
input and corresponding LDCTs as output, as shown in Fig.2
(a). Here we set n = 8, the same as the default setting in the
original model.

2) U-Net denoising model: Adopted from a U-Net model
for reduced dose MRI restoration [23], we applied the model
shown in Fig.2 (b), with NDCTs as input and corresponding
noise image as output, which refers to the image difference
between ND/LDCT image pair.

(a) ResNet model

(b) U-Net model

Fig. 2: Deep learning models for LDCT simulation

Both models are trained (1500 epochs) on the dataset
mentioned in II-A, using Mean Absolute Error (MAE) as the
loss function, Adam as optimizer. The GPU GP102 (GeForce
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GTX 1080 Ti) and TU102 (GeForce RTX 2080 Ti Rev. A)
have been utilised in our training process.

C. Evaluation Metrics

1) Intra-image evaluation metrics: To compare the char-
acteristics of simulated LDCT images with those of real
ND/LDCT image pairs, the mean and standard deviation (SD)
of CT numbers are calculated, as well as image entropy. Mean
CT numbers reflects luminance levels, SD tells the variations
of CT numbers. LDCT are generally darker than NDCT when
displayed in the same window, with ”rougher” texture. Entropy
of images is considered as a measure of both image noise
and resolution [24], which could also differentiate LDCT from
NDCT.

2) Inter-image evaluation metrics: Apart the intra-image
evaluation, the inter-image metrics are also calculated. Beside
the most commonly used quantitative measurements for evalu-
ating image denoising methods [25] as Root mean squared er-
rors (RMSE), peak signal-to-noise ratio (PSNR) and structure
similarity index measure (SSIM), here we also borrowed two
metrics often used for image registration, histogram correlation
(HC) [26] and mutual information (MI) [27], [28] as similarity
metrics. A higher HC or MI value indicates a greater similarity
between the two images. Moreover, the power spectra of
images are also compared to reflect the noise level.

D. Model Application

1) Histogram Matching: As mentioned in section II-A,
the 77 CT scans in the dataset Part II are generated by
different scanners, giving them different imaging parameters
and characteristics. To make these CT images compatible
with the trained U-Net model, a standardization step as pre-
processing is necessary.

Histogram matching (i.e. histogram equalization) is em-
ployed here to fulfill this goal, by matching the histogram
of different images to that of original input images (NDCT
of Subject 0, i.e. reference images). Then the trained model
could work on these standardized image (i.e. matched image)
properly. Since the histogram of an image is related to its
content, here we need to first pair the original image with the
reference image, by searching the smallest structure distance
of the former one and all reference images. Therefore, these
two paired images share similar anatomic structure and their
histogram difference majorly comes from the different imag-
ing characteristics, which will be resolved by the following
histogram matching step, as shown in Fig.3.

Fig. 3: Diagram of Histogram Matching

Fig.4 presents an example of histogram matching. From (a)
to (c), the first row shows the CT images, and the second row
illustrates the corresponding histogram; Cumulative histogram

presented in (d) demonstrated the principle of histogram
matching: mapping each pixel value in original image to the
corresponding pixel value with the same probability in the
reference image. As we can see, the matched image has a
grayer air background, and the contrast of main structures has
been slightly enhanced.

(a) reference (b) original (c) matched

(d) Cumulative Histogram

Fig. 4: Example of Histogram matching (on CT scan of Patient
26, generated by BrightSpeed model from GE MEDICAL
SYSTEMS manufacturer, no window applied).

2) Thresholding and Scaling: The output of trained U-Net
model also needs post-processing to better serve a specific low
dose simulation task.

As introduced in section II-B2, the direct output of U-Net
model is the noise image of an input NDCT, which might
contain some pixel anomalies (caused by patches borders
etc.), Thresholding can solve this problem by assigning those
anomalies to the threshold value, as in Eq.1.

IsimLD,λ = INDCT − λ ∗ thres[Inoise]
IsimLD = max

λ
HC(ILDCT , IsimLD,λ)

(1)

The noise image after thresholding will be subtracted from the
original NDCT images of patient X, to form the corresponding
simulated LDCT. To imitate different doses CT image, we
introduced a scaling factor λ, which is determined by finding
the maximal value of HC of the desired LDCT image ILDCT

and simulated image IsimLD, as illustrated in Fig.6.
In our case, the desired LDCT images is the reference

LDCTs, i.e., the CT scans of 80KVP (CTDI=7.7), about 70%
dose of the NDCT ones (120KVP, CTDI=10.8). For avoiding
the influence of image content on the value of HC, here we
also need to return to the same image pair found in section
II-D1 in the research of the best λ, so that the histogram
correlation we calculate depends mainly on the texture of
image (i.e. noise level), not on the different structures.

200



(a) NDCT (b) LDCT (c) ResLD (d) UnetLD

Fig. 5: Simulated LDCTs from both models after 1500 epochs, with comparison of the real ND/LDCT pair (displayed in
window [-150,250]).

Fig. 6: Diagram of Thresholding and Scaling

III. RESULTS AND DISCUSSION

The results are presented as two parts: the quantitative and
qualitative evaluation of proposed models’ performance on
Subject 0, where the ground truth (real LDCT) is available;
the application of the best-performance trained model on any
Patient X, where the desired dose level could be customized.

A. Model Evaluation on Subject 0

1) Quantitative Evaluation: Using the evaluation metrics in
section.II-C, the statistical analysis of these simulated images
has been done for both models, as in Table II. In our intra-
image evaluation, both ResLD and UnetLD are quite similar
to LDCT (difference< 6%; in terms of luminance (mean),
variance (SD) of CT numbers, the performance of ResNet
model is slightly better than U-Net, while UnetLD’s entropy
difference with LDCT is smaller that of ResLD. Correspond-
ingly, in inter-image evaluation, U-Net model shows better

performance than U-Net, either in terms of traditional metrics
like RMSE, PSNR and SSIM, or in terms of the nouvel metrics
HC amd MI, where the performance difference of two models
is more obvious.

TABLE II: Evaluation of simulated LDCT generated from
ResNet model and U-Net model, comparing with real
ND/LDCT pairs

(a) Intra-image evaluation

Image Mean SD Entropy
NDCT -92.240 89.589 3.000
LDCT -109.926 79.069 2.331
ResLD -112.253 76.278 2.198
UnetLD -112.567 75.293 2.230
ResLD-LD(%) +2.117 -3.530 -5.706
UnetLD-LD(%) +2.403 -4.776 -4.333

(b) Inter-image evaluation

Image RMSE SSIM PSNR HC ⇑ MI ⇑
LD vs ND 43.857 0.597 15.311 0.909 0.720
ResLD vs ND 40.199 0.606 16.062 0.744 0.780
UnetLD vs ND 39.661 0.623 16.183 0.773 0.907
ResLD vs LD 25.492 0.707 20.021 0.953 0.734
UnetLD vs LD 24.143 0.748 20.508 0.964 0.769

In other words, the indices calculated the global absolute
difference of CT values could hardly differential the perfor-
mances of these two models, while the indices focus more on
the total distribution are more in favor of the U-Net model.
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2) Qualitative evaluation: Three example images of sim-
ulated LDCT from both models are presented in Fig.5, as
well as the corresponding ND/LDCT pairs. Apparently both
simulated images are more noisy than NDCT image. From the
point of view of one radiologist expert, the U-Net simulation
results are also more similar to the real LDCTs than the ResNet
ones, when assessing only by visualization.

Fig.7 shows the power spectra of the first example images in
Fig.5, we can see that the power spectrum of UnetLD is much
more close to the one of LDCT than to NDCT, on the contrary
of the spectrum of ResLD, specially in high frequencies, which
can reflect the noise level of images.

(a) all frequencies (b) high frequencies

Fig. 7: power spectra comparison of simulated LDCTs and
real ND/LDCT pair

Considering all the information above, we can conclude that
the U-Net model outperforms the ResNet model in LDCT
simulation, as it can better imitate the texture of noise.
This phenomenon might be attributed to two factors: I. the
method of learning from image difference of ND/LDCT pairs
(noise image) is simply more effective than the direct image
translation from NDCT to LDCT; II. the incorporation of max-
pooling and up-sampling steps in U-Net model emphasized the
significant features of the noise image, thereby improved the
simulation performance. Nevertheless, these hypothesis still
need to be further investigated, and the results of such studies
will be reported in our future work.

B. Model Application on Patient X

Fig.8 presents the simulated low dose images of trained
U-Net model with different scaling factors, referring to dif-
ferent doses. From left to right, there are original CT images
(NDCT), and simulated images at three different dose levels
(λ = 1.5, λ = 2.0, λ = 2.5, among which the last column im-
ages showed the greatest histogram correlation (HC > 0.999)
with the LDCT of Subject 0. From top to bottom, they are CT
images from Patient 26, Patient 48 and Patient 75, from three
different scanners (BrightSpeed model from GE MEDICAL
SYSTEMS, Acquilion PRIME model from TOSHIBA, and
Ingenuity Flex model from PHILIPS, respectively). We can
easily observe that our model has successfully introduced
noticeable quality degradation on all these CT images, despite
their different sources.

Theoretically, with the same procedure presented in section
II-D, this DL-based simulation tool could be employed to
realize any other desired low dose CT images without the

knowledge of scanners, as long as we have at least one ex-
ample of this desired dose CT scan (serving as the simulation
target ILDCT in Eq.1). Further analysis will be conducted to
assess the stability of this model in the presence of artifacts
such as streaking, rings etc. [29].

IV. CONCLUSION

In this paper we proposed a solution to simulate low-dose
CT images without requiring raw data or scanner parameters,
as the inverse problem of image denoising, and proved its
feasibility by transforming two DL denoising models (ResNet
and U-Net model) into LDCT simulation models. The best-
performance model (U-Net) has been further proved as a
generic tool for LCDT simulation, applicable for any patient
and desired dose (as long as one desired dose CT scan is
available). Furthemore, we share the trained generic LDCT
simulation model as well as the reference LDCT-NDCT pairs
for further studies.

More subjective assessments for specific pathology (adrenal
lesions) are expected to be done in the near future. Further
study on the influence of radiation dose on CT image quality
in terms of its diagnostic performance is now ongoing, based
on the LDCT dataset generated by this deep learning model.
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Abstract—The paper proposes a method for the enhancement
of medical point clouds suitable for implementation at the edge
of a next generation network. This method exploits the 2D
point clouds projection employed in compression algorithms and
enhances the point cloud by applying a diffusion sampling model
in the flattened domain. The proposed approach, to which we
refer to as Projection Sampling based Point Cloud Enhancement,
perfectly fits the e-health service architecture in next generation
network since it can be implemented at the network edge or
within the network, at an intermediate transcoding stage. The
experimental findings with medical point clouds demonstrate the
method’s efficacy in mitigating noise and preserving texture in-
formation, making it a valuable tool for incorporating point cloud
enhancement into an Extended Reality transmission system.

Index Terms—Point cloud, Extended reality, Image quality
assessment, Diffusion models

I. INTRODUCTION

The paper presents the Projection Sampling based Point
Cloud Enhancement (PS-PCE) method for the enhancement
of medical Point Clouds (PCs) suitable for implementation at
the edge of a next generation network. 1

Extended Reality (XR) e-health services are expected to
play a significant role in next generation networks, and PCs are
excellent candidates for volumetric data representation. Due
to PC acquisition or generation errors, the vertex locations
may be estimated in presence of an additive error, or a few
points cloud vertices may lack of attribute information, such
as color. Thereby, enhancement methods such as geometry or
texture PC denoising as well as PC inpainting could improve
the PC quality and definitely the XR service feasibility. PCs
are defined into a 3D, non-Euclidean domain and several
enhancement methods in the literature, while focusing on
novel processing tools, overlook the feasibility of performing
enhancement within an XR e-health service.

The PS-PCE method stems on standard architectures for
medical XR data encoding and transmission over next genera-
tion networks. In particular, PS-PCE acts on multiple flattened
representations of the PC, which is the same adopted in
MPEG V-PCC coding standard [1]. The enhancement applies
a well established diffusion network model to the flattened

1This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001 - program
“RESTART”.

representations, and then recomputes the corresponding 3D
data. The PS-PCE method approach perfectly fits the e-health
service architecture in next generation network and it has
a few advantages: i) it can be implemented at the network
edge, or at user’s premises, thereby exploiting edge computing
capabilities; ii) it can be realized within the network, at an
intermediate transcoding stage. Experimental results of PS-
PCE method on medical PC datasets prove that the method
fast and effectively counteracts noise and texture information
loss, providing an effective tool to encompass PC enhancement
in a XR transmission system.

II. BACKGROUND REVIEW

PCs are sets of data characterized by locations and
color/texture attributes, acquired by purely passive systems
with an RGB camera, or both active and passive systems,
including a RGB plus depth camera or a Light Detection and
Ranging (LIDAR).

Visual quality of PCs is a matter of strong interest in differ-
ent scientific communities, from signal processing [2], [3] to
deep learning [4], [5]. Several methods that estimate the visual
quality of the PCs stem from metrics specifically developed for
images or meshes [6], [7]. In general, tools belonging to 2D
processing have been adapted to elaborate PCs for different
purposes, such as the video-based PC compression [1] that is
based on projections of the PC on the 2D space in order to use
state-of-the-art methods for video coding [8]. Another class
of problems is the PC completion processing, where several
methods apply state-of-the-art methods for 2D completion to
3D PCs by means voxelization and 3D convolution [9]–[11].

PCs are expected to enable XR services such as
telemedicine or remote surgery in 5G and beyond networks.
Still, PC compression is challenging due to the non-uniform
distribution of points in space and the typically large number
of points even within a single object. The ISO Moving
Picture Expert Group (MPEG) is addressing standardization
of both LIDAR and surface PC compression and of dynamic
multimedia PCs; for these latter, the Video PC Coding (V-
PCC) standard has been designed. The V-PCC algorithn for
dynamic content leverages an intermediate PC representation,
by suitable projections of the PC in 2D space.

We leverage the PC encoding architecture to perform the
PC enhancement in the flattened representation computed by

979-8-3503-4218-5/23/31.00 © 2023IEEE
204



the V-PCC code: the enhancement applies without training
in the flattened domain, leveraging either edge computing or
network-assisted processing in a next generation network.

Fig. 1. From 3D PC vertex locations xn ∈ R3, n = 0, ...N − 1, and
texture attributes cn ∈ [0, 255]3 to 2D maps O(u, v), G(u, v), T (u, v),
u, v = 0, · · ·M−1.

III. PROJECTION SAMPLING POINT CLOUD
ENHANCEMENT

A PC is a collection of N points (vertices) in the 3D space,
where each point is associated with position and attribute
information (e.g., luminance and color). Let xn ∈ R3 denote
the PC vertex locations n = 0, ...N−1, and cn ∈ [0, 255]3 the
associated texture attributes. For medical PCs, such as those
extracted from laparoscopic measurements [12], the texture
attributes typically consists in photometric information. Due
to acquisition limits, the PC may present noisy or missing
attributes at some vertices. The purpose of the proposed
enhancement is to recover these kinds of errors, in the same
2D domain where compression is carried out.

A. Projection generation

The V-PCC encoding represents the N vertices PC by three
M ×M bidimensional maps, representing the PC Occupancy,
Geometry and Texture, respectively. Let us denote the flatten-
ing operators as ΨO, ΨG, and ΨT , respectively. In a nutshell,
each operator aggregates different lateral 2D projections of the
PCs into a 2D map, avoiding self-occlusion or hidden surfaces
[1], and possibly applying an edge smoothing operator; finally,
the operators yield the following bi-dimensional data: O(u, v) = ΨO (x0, · · ·xN−1)

G(u, v) = ΨG (x0, · · ·xN−1)
T (u, v) = ΨT (x0, · · ·xN−1; c0, · · · cN−1)

(1)

for u, v = 0, · · ·M − 1. By this representation, the n-th
vertex of the PC is associated to a pixel (un, vn) = Φ(xn).
Let us remark that the operators ΨO, ΨG, and ΨT are not
perfectly reversible, since they rely on a quantization of the
spatial coordinates of the PC vertices to map them on the
bidimensional (u, v) grid.

An example of the maps O(u, v), G(u, v), T (u, v), for
u, v = 0, · · ·M−1 is shown in Fig. 1.

The occupancy map O(u, v) is a binary indicator map
of pixels corresponding to PC points; the geometry map
G(u, v) provides the depth information of pixels in space
before projection (e.g., the distance between the pixel location
in 3D space and the projection plane); the attribute map
T (u, v) preserves the texture (luminance and chrominances)
information of the initial PC.

B. Projection sampling

Herein, we address the enhancement of the maps O(u, v),
G(u, v), T (u, v) through diffusion models. According to dif-
fusion models, the observed degraded image is obtained from
the original one by a Markovian, step-wise degradation. By
retracing the chain of states in reverse, the model learns to
reconstruct the original image starting from the degraded one.

The literature presents several supervised and unsupervised
diffusion models tackling inverse problems, both [13]–[16].
The models are slow in training due to the high dimensionality
of the latent variable, which allows to generalize well.

The applicability of classical diffusion models to the en-
hancement of O(u, v), G(u, v), T (u, v) is somewhat limited.
The maps O(u, v), G(u, v), T (u, v), despite being bidimen-
sional, do not fit statistical properties of natural images [17],
such as Markovianity (smoothness). The abrupt edges between
different 2D projections of the original PC data lead to highly
varying, fragmented bidimensional sequences.

We resort here to the class of Denoising Diffusion Restora-
tion Models (DDRM) in [18], which immediately general-
ize without requiring specific training. This feature perfectly
suits the enhancement of the O(u, v), G(u, v), T (u, v) maps.
DDRM iteratively solves a recovery problem exploiting any
pre-trained diffusion model at each iteration. DDRM assumes
that the observed image y is linearly related to the unknown
original image x, namely y = Hx +w, being H the known
linear degradation matrix and w an additive Gaussian noise of
known variance σ2

n. The model iteratively solves a generalized
linear inverse problem: the idea is to tighten the noise present
in the measurement with the noise of the diffusion process
x1:T , ensuring that the state x0 is faithful to the measurement
y (state without any added noise). The diffusion process lever-
ages the Singular Value Decomposition (SVD) of H and it acts
as an iterative orthogonalization of the signal and of the noise.
At the k-th iteration, at state i, the distribution of the unknown
image xi is computed as p

(k)
Xi

(xi) = N
(
x̂i

(k),Σ(k)
)

, where

x̂i
(k) is a weighted combination of the measurements y and

of the nonlinear estimate x̃i
(k) = η

(
x̂i

(k+1)
)

, computed using
any pre-trained diffusion model such as those in [13], [14].
We exploit the DDRM generalization property to perform
projection sampling starting from the observed maps O(u, v),
G(u, v), T (u, v); the recovered maps are then back projected
in the 3D space leading to inpainting as well as geometry or
texture denoising on the observed PC.

Projection sampling requires knowledge of the degradation
matrix H, as well as of an estimate of the variance of the
additive texture or geometry noise.

205



Fig. 2. PS-PCE implementation within a Next generation networks XR service: edge computing (left) and network assisted rendering (right).

In inpainting, a subset I of the PC vertices lacks of the
attribute information, i.e., cn is missing for n ∈ I, due to a
PC acquisition or generation error. For any n ∈ I, we label
the mirror point (un, vn) as missing in all the three maps. In
denoising, we set the additive error variance to a known value.

IV. PS-PCE AT NETWORK EDGE

Next generation networks encompass delivery of XR [19]
and Immersive Video (IV) data [20]. Medical XR data, either
directly acquired by LIDAR or Time-of-Flight (TOF) cameras,
or reconstructed by Red Green Blue Depth (RGBD) single
or multi camera rigs, are taking the lion’s share in e-health
services, yet they require effective encoding algorithms and
edge-assisted rendering services for clinical [21] or educa-
tional purposes [22], [23]. Artificial Intelligence based network
resources management is expected not only to provide high
transmission rate at low latency, but also network-assisted
processing and edge computing facilities [24].

The PS-PCE approach is natively designed to work on
intermediate variables of the encoding process, and it can
naturally fit the XR service architecture. This is illustrated
in Fig. 2 (left side). The PS-PCE can be realized both at
the source and destination side, on the maps produced for
the purpose of PC encoding. The PS-PCE can be realized in
edge computing, i.e., exploiting computation resources at the
network edge and at the user premises. Besides, we observe
that the computation architecture may encompass network
assisted processing, as illustrated in Fig. 2 (right side). In this
scenario, the encoded PC data is only partially decoded at an
in-network element (transcoder); then, PS-PCE is applied, and
the enhanced data are re-encoded and transmitted to the final
destination. Different computation architectures face different
problems. Application of PS-PCE at point A counteracts acqui-
sition errors and missing attributes, whereas PS-PCE at point
B can effectively recover distortions due to lossy compression
or provide transmission error concealment. Finally, the in-
network processing provided by applying PS-PCE at point E
can ease the computational effort at the destination side, and
this can extend the feasibility of the approach to mobile end
user devices.

Fig. 3. Endoscopic PC: a) case of vertices with missing attributes and b) case
of additive Gaussian noise.

V. NUMERICAL RESULTS

To prove the potential of PS-PCE, we consider two different
kinds of medical data, belonging to endoscopic PC [12] and
aneurysm PC [25].

We firstly analyze the endoscopic dataset [12]. The PC has
N = 123200 points, and RGB attributes at each vertex. The
vertex locations are scaled and shifted so as to fit the interval
[0, 640] per axis (the axis values are empirically chosen to
contain all frame projections in a single 1280×1280 image).

In the case of inpainting, a set I of vertex attributes of initial
PC has been removed. After application of the Ψo these points
correspond to non zero values in the occupancy and geometry
maps, whereas they are represented in black the attribute maps.

Fig. 3 shows the endoscopic PC (a) in the case of inpainting,
i.e., vertices with missing attributes, and (b) in presence of
additive Gaussian noise. Fig. 4 shows the different maps
produced by the V-PCC in presence of inpainting, namely the
occupancy O(u, v), geometry G(u, v), and attribute T (u, v)
maps corresponding to the PC in Fig. 3 a). The vertices without
attributes are clearly visible as non zero areas in the occupancy
and geometry maps, and as black areas in the attribute map.
In Fig. 4, mask is directly identified on the projections in the
attribute map. In Fig. 5 we present the O(u, v), G(u, v), and
T (u, v) maps in the case of PC affected in additive Gaussian
noise for the PC in Fig. 3.

The map selected for processing is tiled into blocks of size
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Fig. 4. Endoscopic PC inpainting: occupancy O(u, v), geometry G(u, v), and attribute T (u, v) maps with missing pixels related to the PC vertices in I.

Fig. 5. Endoscopic PC denoising: occupancy O(u, v), geometry G(u, v), and attribute T (u, v) maps with additive Gaussian noise with σn = 0.05.

Fig. 6. Endoscopic PC inpainting: occupancy O(u, v), geometry G(u, v), and attribute T (u, v) maps after inpainting.

Fig. 7. Endoscopic PC denoising: occupancy O(u, v), geometry G(u, v), and attribute T (u, v) maps after denoising.

256×256 to adapt it to the DDRM library [18] and composed
back after the processing.

The DDRM model assumes that the matrix H is known.
In the inpainting case, the matrix H is represented by the
mask provided along with the attribute map and identifies
the areas of missing pixels to be reconstructed. We set
H = diag(b0, · · · bN−1). In the denoising case, the degradation
consists in the additive Gaussian noise that can affect both
the PC vertices coordinates and the attribute at each vertex.
This translates into an additive noise on both the attribute map
and the geometry map. The DDRM assumes the acquisition
noise variance to be known, so as to properly weight the

measurements and the current estimate throughout the iterative
recovery algorithm. At each iteration, DDRM exploits a pre-
trained model as nonlinear image estimator; in the simula-
tions, we resort to the pretrained ImageNet diffusion model
as nonlinear estimator [15] because it demonstrates better
performance in solving inverse problems on out-of-distribution
images with general content.

Figs. 6 and 7 display the attribute maps after processing
with the DDRM model in the inference phase, whereas Figs.
8 a) and b) display the final PCs after reconstruction.

We take into consideration another PC in order to apply
our method to other possible scenarios [25]. We represent
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Fig. 8. PS-PCE results on endoscopic PC: a) inpainted and b) denoised PC.

in Fig. 9 a PC modeling an aneurysm, where we added an
additive Gaussian noise of known variance. This PC contains
only geometry information, without attribute. We represent
the occupancy O(u, v) and the geometry G(u, v) in this
configuration in Fig. 10. Then we apply all the steps of our
proposed denoising method, and we can see results in terms
of occupancy and geometry maps in Fig. 11 and in terms of
denoised PC in Fig. 12. We can remark that after the denoising
the geometry of the aneurysm PC is more defined and more
details are visible.

Tabs. 1, 2 and 3 show the Image Quality Assessment
(IQA) metrics, computed given the reference image. These
Full Reference objective quality metrics estimate either the
loss of visual information [17], [26] or the similarity between
the reference image and the corrupted/restored image [27]–
[29] by modeling the Human Visual System.

Tabs. 1 and 2 present the IQA metrics for the endoscopic
test, for the inpainting and denoising (σn = 0.05) cases
respectively, before and after DDRM processing. All the
metrics improvement, apart for VIF in the attribute map case.
VIF is sensitive to the artifacts that do not fit natural images
models [30]. Future work will extend the diffusion model to
account for joint processing of the geometric, occupancy and
texture information.

In Tab. 3, the values for the aneurysm test are shown,
specifically for the denoising case (with σn = 0.05 and
σn = 0.1). The structure of the aneurysm PC after denoising
exhibits a high number of details compared to the noisy case.
As can be seen from the quality indices, the DDRM model is
able to recover the final PC close to the original, pristine PC,
even in the case of higher noise with σn = 0.1.

It is important to highlight that even a moderate amount of
noise added to the maps generates high levels of noise in the
final PCs.

VI. CONCLUSION AND FUTURE WORK

This paper has presented the Projection Sampling - Point
Cloud Enhancement method suitable for implementation at the
edge of a next generation network. The method exploits the
2D PCs projection employed in compression algorithms and
enhances the PC by applying a diffusion sampling model in the

Fig. 9. Aneurysm PCs in presence of additive Gaussian noise.

Fig. 10. Aneurysm PC denoising: occupancy O(u, v), geometry G(u, v)
maps with additive Gaussian noise with σn = 0.05 (center) and σn = 0.1
(right).

Fig. 11. Aneurysm PC denoising: occupancy O(u, v), geometry G(u, v)
after denoising.

Fig. 12. Effect of PS-PCE denoising on Aneurysm PCs of Fig. 9.

flattened domain. We present different architectures to encom-
pass PS-PCE in e-health service architecture in next generation
network. PS-PCE can be implemented at the network edge or
within the network, at an intermediate transcoding stage.

Experimental results on medical PCs show that PS-PCE
effectively counteracts noise and texture information loss on
the PC by applying a diffusion model on the PC projection.
This paves the way to extend several results achieved by
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TABLE I
INPAINTING EXPERIMENT (ENDOSCOPIC TEST).

IQA before DDRM after DDRM
metrics attribute map attribute map

MS-SSIM 0.9670 0.9715
FSIM 0.9552 0.9635
GMSD 0.0614 0.0482
VIF 0.7369 0.7192
MAD 124.27 128.80
PSNR 21.98 25.43

TABLE II
DENOISING EXPERIMENT (ENDOSCOPIC TEST).

IQA before DDRM after DDRM before DDRM after DDRM
metrics attribute map attribute map geometry map geometry map

σn = 0.05 σn = 0.05 σn = 0.05 σn = 0.05

MS-SSIM 0.9175 0.9920 0.8720 0.9980
FSIM 0.9420 0.9773 0.8400 0.9988
GMSD 0.0736 0.0208 0.1041 0.0117
VIF 0.4184 0.3241 0.5501 0.6288
MAD 97.10 44.57 98.75 12.37
PSNR 31.89 42.35 28.91 49.10

TABLE III
DENOISING EXPERIMENT (ANEURYSM TEST).

IQA before DDRM after DDRM before DDRM after DDRM
metrics geometry map geometry map geometry map geometry map

σn = 0.05 σn = 0.05 σn = 0.1 σn = 0.1

MS-SSIM 0.8860 0.9927 0.7234 0.9884
FSIM 0.9890 0.9940 0.9629 0.9877
GMSD 0.0999 0.0196 0.1982 0.0307
VIF 0.5065 0.6084 0.3147 0.5400
MAD 86.71 23.67 116.77 35.54
PSNR 28.88 44.14 23.03 42.36

diffusion network to PCs. Future work will address the joint
modeling of the different kinds of bidimensional information
associated to the PC (shape, geometry, texture) into an unified
diffusion model.
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ABSTRACT

Multimodal medical imaging combine data obtained from
multiple techniques simultaneously, yielding more detailed
information about the content, which is a clear advantage
over independent acquisition techniques. As these images
are acquired using different imaging modalities and some-
times even in different dimensions, they commonly require a
geometrical registration process. However, when they are en-
coded using standard image codecs the prediction methods do
not exploit the redundancies related to the multimodal acqui-
sition. In this paper, a novel lossless multimodal prediction
module is introduced. The proposed method employs a deep
learning-based approach with Image-to-Image translation for
the purpose of joint coding of Positron Emission Tomography
(PET) and Computed Tomography (CT) image pairs. Prior to
the coding stage, a Generative Adversarial Network (GAN)
is used for multimodal image translation. Then, a weighted
estimated image is utilised as the I-frame, while the weighted
sum of the original and synthesised image from the same
modality serves as the P-frame for inter prediction. By em-
ploying weighted frames, the predictive frame approximates
the reference frame more accurately, enhancing the overall
performance of the prediction process. The experimental
results, on a publicly available PET-CT dataset, demonstrate
that the proposed prediction scheme outperformed the pre-
viously proposed method, and attains coding gains up to
13.20% when compared with the single modality intra coding
of the Versatile Video Coding (VVC) lossless standard.

Index Terms— Lossless image coding, Multimodal im-
age coding, Learning based prediction, Generative predictive
coding, Versatile Video Coding
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1. INTRODUCTION

Medical imaging has emerged as a critical resource to assist
healthcare professionals [1]. It is used in diverse applications
such as for example diagnosis, monitoring, and treatment
planning. The continuous development of medical imag-
ing technologies [2] have pushed the boundaries of image
resolution and bit-depth across multiple modalities. As a
consequence of the increased image quality, the requirements
for storage and transmission of such images have changed,
creating new challenges for hospitals, clinics, and research
institutions. The use of multimodal images [3], which rep-
resent objects captured through different technologies simul-
taneously, helps to overcome the limitations of independent
acquisition techniques, facilitating the extraction of comple-
mentary information such as structural and functional scans.

Deep learning has gained significant attention in the re-
search domain, offering solutions to a wide range of prob-
lems. This has led to the development of various algorithms,
including Deep Convolutional Neural networks (CNN), Au-
toencoders (AE), GANs, and Vision Transformers. These
techniques have been increasingly applied to leverage the
potential of multimodal medical images, particularly in tasks
such as medical image segmentation, synthesis, and cod-
ing. The use of multimodal information can lead to the
development of more sophisticated and efficient methods.
The current state-of-the-art work using multimodal medical
images has been predominately focused on tasks such as seg-
mentation and synthesis. Regarding the segmentation task,
in [4], a novel whole-body segmentation framework for accu-
rately identifying heterogeneous Metastatic Melanoma (MM)
lesions in 3D Fluorodeoxyglucose (FDG)-PET / CT images
is described. Ziqi Yu et al. [5] proposed MouseGAN++, a
novel framework for segmenting mouse brain fine structures
with limited multimodal Magnetic Resonance Imaging (MRI)
data. It employs a disentangled and contrastive GAN-based
approach to synthesise missing modalities and enhance seg-
mentation performance. Experimental results demonstrate
superior performance compared to state-of-the-art methods,
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showcasing its effectiveness in fusing cross-modality infor-
mation and achieving robust segmentation outcomes.

A generative adversarial approach for medical image
synthesis (ResViT) is described in [6]. It combines vision
transformers, convolution operators, and adversarial learn-
ing to achieve high-quality results. The generator utilises
aggregated residual transformer (ART) blocks, promoting
representation diversity and task-relevant information. Ex-
perimental evaluations demonstrate its superiority in syn-
thesising missing sequences in multi-contrast MRI and CT
images from MRI, when compared to competing methods.

The continuous demand for the improvement of image
quality led to the development of more sophisticated algo-
rithms in medical imaging. However, this progress has also
resulted in a significant increase in data volume especially
when multimodal imaging is employed, requiring efficient
coding methods for storage and transmission. To address
these concerns, lossless coding techniques are commonly
employed in medical compression applications to ensure the
information is not modified. The emphasis on preserving the
details plays an important role in maintaining diagnostic in-
tegrity and achieving high accurate analysis in medical imag-
ing. Regarding lossless multimodal medical image coding, in
the literature, few works address this problem using a deep
learning approach. In [7, 8] a pipeline based on an Attention-
Guided Generative Adversarial Network (AGGAN) that gen-
erates an estimated PET to be jointly coded with the CT was
proposed. For the sake of simplification, the AGGAN will
be referred to as GAN throughout the remainder of the paper.
In [7], the authors suggest to losslessly intra-code the original
CT and the residue between the original and the estimated
PET. A different prediction method is proposed in [8], where
the original PET is encoded as a P-frame using the estimated
one as a reference in the inter prediction. The resulting P-
frame residue is computed using the VVC standard motion
estimation module.

In this paper, a deep learning approach based on an Image-
to-Image translation (I2I) [9] to jointly code PET-CT image
pairs is adopted. A new prediction module integrated with the
lossless VVC standard is proposed. The main contributions
presented in this work can be summarised as follows: (i) a
new lossless cross-modality prediction, that approximates the
reference to the P-frame used for the inter-coding, (ii) abla-
tion studies that demonstrate the efficiency of the proposed
method, and (iii) experimental results on a PET-CT paired
dataset that demonstrates the proposed prediction method can
improve the coding performance when compared to the stan-
dard lossless VVC with intra modality prediction and other
state-of-the-art learning-based predictions schemes.

The remainder of the paper is organised as follows: Sec-
tion 2 describes the proposed prediction method, Section 3
presents the experimental results, analysing the compression
performance and comparing it with other coding strategies.
Section 4 presents the concluding remarks.

2. PROPOSED METHOD

In this work, a cross-modality encoder based on I2I is ap-
plied for PET-CT pairs within the context of lossless coding.
The proposed lossless prediction scheme, shown in Figure 1,
employs a module based on the VVC encoder to extract the
coding residue and generate the compressed bitstream. The
encoding process involves bypassing the transform (T) and
quantisation (Q) functions of standard hybrid codecs, where
the original CT image (CTo) is encoded using intra coding
(according with the Common Test Conditions configuration
file encoder intra vtm.cfg), and PETo as inter prediction.

Initially, CTo is intra coded, then a GAN produces an es-
timated PET frame(PETe) having CTo as input. Then, the
quality of PETe is enhanced using the optimisation method
proposed in [8]. A Nelder–Mead simplex algorithm [10] was
used to minimise the mean absolute error (MAE) between
PETo and PETe, by rescaling, adjusting the brightness and
spatial alignment of the estimated one. Two different pre-
diction methods are used to inter encode PETo, selecting
the one that results in the lower bitstream: In the first one,
PETo is encoded as a P-frame with PETe as the reference.
The VVC standard’s motion estimation/compensation mod-
ule is utilised to compute the P-frame residue, compensating
for spatial shifts between PETo and PETe and minimising
the energy of the residue. In the second prediction method,
PETe and PETo are combined by means of a weighted sum
of the frames. The resulting combined frame (PETp), to be
encoded as a P-frame, is expressed as:

PETp = α1 × PETe + α2 × PETo, (1)

where α1, and α2 are the PETe and PETo weights, respec-
tively. The reference frame (I-frame) is obtained by applying
a weighted sum of α1 and α2 to PETe, which can be ex-
pressed as:

PETi = (α1 + α2)× PETe (2)

This procedure enables the approximation of the P-Frame
to the I-Frame, which is expected to minimise the residual
energy during the coding process.

A consequence of the summation of two images with a
given bit depth naturally results in an image with a higher
bit depth. α1 and α2 are calculated in such manner that the
maximum bit depth of the resulting frames does not surpass
16, which corresponds to VVC maximum coding bit depth.
Optimisation of brightness and contrast is performed on the
P-Frame to minimise the MAE between the reference (I) and
predictive frames (P). This optimisation process is applied
to both prediction methods. The resulting prediction residue
is then subjected to entropy coding and integrated into the
compressed stream. The computed optimisation parameters,
including scaling, contrast, brightness, and spatial alignment,
are also incorporated as side information within the com-
pressed stream.
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Fig. 1. Proposed lossless cross-modality prediction scheme (main contributions are shown within the dashed red box).

At the decoding phase, the initial step involves decoding
CTo, which is subsequently used to generate PETe, with the
same GAN employed in the encoder. Moreover, the bit depth
information is extracted from the bitstream to identify the em-
ployed prediction method. Finally, the PETo is decoded, en-
suring the reconstruction of the original PET-CT pair without
any loss of information. The selection of input images be-
tween CTo and PETo is facilitated by Sw1 and Sw2. Sw1 is
activated when CTo is the input, and Sw2 when it is PETo.
In addition, the proposed framework incorporates Sw3 and
Sw4, enabling the selection of the most efficient prediction
scheme for each PET-CT pair. Sw4 is responsible for choos-
ing the prediction method that utilises the weighted sum of
the original and estimated PET as the P-Frame.

2.1. Cross modality image translation network

In order to perform the CT to PET image translation the GAN
architecture proposed in [11], with a reformulation of the
generator and discriminator loss functions, is used. This ar-
chitecture is comprised of two primary components: a gen-
erator (G) and a discriminator (D) network. The generator
network is responsible for producing synthetic data, while
the discriminator network is designed to differentiate between
real and generated data. By training these two networks in an
adversarial manner, the GAN aims to generate realistic and
high-quality data that closely resembles the real data distri-
bution. An essential characteristic of the GAN is its embed-
ded attention mechanism, which enables the detection of the
most distinctive semantic regions within images across differ-
ent domains

For the adversarial loss, the least square approach de-
scribed in [12] was used. This loss function imposes a

penalty on the generated images proportional to their de-
viation from the assigned label (1 for real and 0 for generated
data), providing informative feedback to the generator re-
garding the proximity of the generated images to be classified
as real. This, in turn, leads to higher gradients and enhances
the effectiveness of the generator. It is worth noting that the
absence of such distance information, as highlighted in [13],
can give rise to the well-known issue of vanishing gradients.
Therefore, as discussed in [12], the adoption of the least
square loss function improves training stability, and it can be
expressed as:

(3)
LLSGAN(D) =

1

2
Ey∼pdata(y)

[(D(y)− 1)2]

+
1

2
Ex∼pdata(x)

[(D(G(x))2],

(4)LLSGAN(G) = Ex∼pdata(x)
[(D(G(x)− 1)2],

where x and y correspond to the original CT and PET respec-
tively, and ŷ = G(x) to the estimated PET. Ex∼pdata(x)

and
Ey∼pdata(y)

represents the expected value of CT and PET data
distribution, respectively. To enhance the quality of the esti-
mated images by the GAN, four non-adversarial losses were
implemented (pixel, perceptual, style, and entropy). The pixel
reconstruction loss (an L1 loss) adopted, was proposed by
Isola et al. in [14], and it serves to reduce the structural dif-
ferences between the original and estimated images. This loss
can be defined as:

(5)LPixel(G) = Ex∼pdata(x)
[∥G(x)− y∥1].

The pixel reconstruction loss relies on the pixel distance
measurement between a target image y and an estimated im-
age ŷ, which has been found to produce blurry results, as
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discussed in [15, 16]. To effectively assess the learned fea-
ture representations of the GAN network, the perceptual loss
used in [17] was adopted. This loss minimises the discrep-
ancy between high-level perceptual features from the target y
and estimated ŷ images, and consequently forces both feature
representations to be similar. The feature maps can be either
extracted from pre-trained feature extractors, or directly from
the discriminator D layers. The adapted perceptual loss uses
feature maps extracted from the discriminator D and can be
expressed as:

(6)LPercep(G) =
1

hiwidi

M∑
i=0

λcP,i(∥Di(y)−Di(ŷ)∥1),

where Di represents the intermediate feature map extracted
from the ith layer of the D. The discriminator consists of
multiple hidden layers, denoted by M . Moreover, λcP,i de-
notes the weighting factor assigned to the ith layer, indicating
its relative importance in the overall loss calculation.

To improve the generator’s capability to capture complex
patterns, Gatys et al. [18, 19] proposed a style reconstruction
loss. This loss utilises the feature maps extracted from the D
and computes their correlation along the depth dimension us-
ing the squared Frobenius norm of the difference between the
Gram matrix of the original (Gri(y)) and estimated (Gri(ŷ))
image. The Gram matrix and the style reconstruction loss can
be defined as:

(7)Gri(y)m,n =
1

hiwidi

hi∑
h=0

wi∑
w=0

Di(y)h,w,mDi(y)h,w,n,

(8)LStyle =
M∑
i=0

λcS,i
1

4d2i
(∥Gri(y)−Gri(ŷ)∥2F ),

where Di(y)h,w,m denotes the feature map extracted from the
ith layer of the discriminator D, with hi, wi, and di represent-
ing the height, width, and depth of the extracted feature space,
respectively. The λcS,i determines the influence of the Gram
matrix from the ith layer in the style reconstruction loss.

Efficient lossless image compression involves a crucial
step: entropy coding. For the proposed prediction method,
PET estimates closest to the original PET are desirable for
coding purposes, as they result in lower residue entropy.
Lower entropy residues are known to enhance the cod-
ing efficiency. To reinforce this, a loss term, denoted as
LEntropy(G), is used. This loss aims to minimise the energy
of the estimated residue, thus promoting higher efficiency
in coding. The loss term is formulated as a function of the
estimated entropy of the residue.

LEntropy(G) = −
M∑
i=1

pi log2 pi, (9)

where pi denotes the probability of occurrence for each of the
M individual pixel values in the residue (y - ŷ).

The final loss function used for the proposed GAN frame-
work for CT-to-PET image translation is defined as follows:

L(D,G) = LLSGAN(D) + λLSGAN × LLSGAN(G)

+λp × LPixel(G) + LPercep(G) + LStyle(G)

+λE × LEntropy(G),

(10)

where λE, λLSGAN, and λp are the weights of the entropy,
least-square, and pixel reconstruction loss respectively. The
discriminator used in this work adopted the 70 × 70 Patch-
GAN architecture proposed by Isola et al. [14], featuring
five discriminative layers, while the generator employed the
ResNet architecture [20] with 9 residual blocks.

3. EXPERIMENTAL ASSESSEMENT

3.1. Dataset

In order to evaluate the performance of the proposed pre-
dicted scheme, “The Cancer Imaging Archive (TCIA)” [21]
was used. This dataset comprises a total of 2111 PET-CT
pairs, from where 1391 were allocated for training and 721 for
testing. The PET images have a resolution of 128×128, while
the corresponding CT images have a resolution of 512× 512.
Both PET and CT images are represented in grayscale with
a bit depth of 8. To ensure consistency and remove irrele-
vant regions, the images underwent a pre-processing step, by
first defining a head segmentation mask, cropping the back-
ground. Subsequently, zero-padding was employed in order
to equalise the variable resolution, resulting in 100× 100 for
PET images and 320× 320 for CT.

3.2. Experimental Setup

The GAN was trained for 1500 epochs, employing a batch
size of 4, and batch normalisation. Different hyperparam-
eters were tested using a grid search method. The follow-
ing parameters were set as follows: λE = 10, λPixel =
10, λLSGAN = 1, λcP,0 = 5, λcP,1 = 5, λcP,2 = 2.5,
λcP,3 = 1.5, λcP,4 = 1, λcS,0 = 5, λcS,1 = 5, λcS,2 = 2.5,
λcS,3 = 1.5, and λcS,4 = 1. The Adam optimizer [22] was
used with momentum terms β1 = 0.5, β2 = 0.999, and a
learning rate of 2 × 10−4. A linear learning rate policy was
employed, where the learning rate decreases linearly to 0 af-
ter 250 epochs. During the training process, an additional
convolutional layer was incorporated as the initial layer of the
generator to perform the downsampling of CT images in order
to align them with the PET resolution.

The coding gain (CG) was adopted as the performance
metric to evaluate the coding efficiency of the proposed ap-
proach, which is defined as follows:
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CG =
Size(ref)− Size(x)

Size(ref)
× 100 (11)

where Size(ref) and Size(x) are the compressed data size
obtained using the VVC lossless in intra mode, and with the
proposed prediction method, respectively.

The optimal values for α1 and α2 were determined by
means of a grid search algorithm. The coding performance
of various configurations of α1 and α2 were evaluated, with
α values restricted to positive integers to guarantee lossless
coding compatibility with the VVC. Moreover, considering
that images within the dataset have a bit depth of 8, and the
VVC standard supports a maximum bit depth of 16, it is im-
portant that the sum of α1 and α2 does not exceed 256.

3.3. Results

To assess the effectiveness of the proposed framework and
find optimal values of α1 and α2, an initial evaluation was
conducted without the use of Sw3. The results obtained with
the proposed prediction method are presented in Table 1 for
different combinations of α1 and α2. The table presents the
average CG (%) for PET images across, with negative values
indicating a decrease in coding efficiency, compared to the
VVC intra-coding.

Table 1. Average CG (%) for PET images using different α
values
α2α2α2

α1α1α1 1 2 3 4 5
1 7.14 -4.46 -5.75 -6.97 -7.81
2 -14.86 -17.27 -18.86 -18.40 -19.47
3 -25.38 -28.1 -30.24 -32.09 -33.24
4 -31.47 -28.2 -34.70 -35.80 -36.40
5 -38.06 -39.8 -41.54 -43.05 -43.92

The results in Table 1 also make it clear that only when
α1 = α2 = 1 the proposed prediction method yields positive
coding gains (7.14%, in the case). Based on these results,
α1 = α2 = 1 is chosen as the optimal configuration for the
alpha values. The percentage of PET images where coding
gains were obtained (compared to the alternative α1 = 0 and
α2 = 1) was also assessed, and the results are presented in
Table 2. These results cover a range of α values tested in
the grid search that resulted in at least one PET image with
superior coding efficiency.

Table 2. Percentage (%) of the number of PET images with
higher coding efficiency when compared to [8]

α2α2α2
α1α1α1 1 2 3 4 5

1 53.6 0.41 0.14 0.14 0.14

The results shown in Table 2 (improvements only on
53.6% of the PET images compared to [8]) motivated to the

development of a more adaptive and versatile solution. It was
observed that the configuration with α1 = 0 and α2 = 1
(Sw3 in Fig. 1) approximates the results of [8]. Accordingly,
aiming to maximise the overall coding gains, and based on
real-time coding efficiency assessment, an embedded decider
that enables the dynamic selection of the best coding method
for each frame was implemented (thus stating the selection
of Sw3 and Sw4). The relative performance for the three
different prediction methods, with and without the brightness
and contrast optimisation procedure, is shown in Table 3.

Table 3. PET average CG(%)
Brightness and Contrast

Optimisation [8] Proposed Proposed with
embedded decider

- 7.17 7.14 13.04
✓ 7.19 7.46 13.20

The results in Table 3, show that without the optimisation
procedure, the prediction method described in [8] achieved a
CG of 7.17%. Also, that the proposed method without the
embedded decider, achieved a similar CG of 7.14%. How-
ever, with the incorporation of the embedded decider, an im-
provement in coding efficiency was achieved, resulting in a
CG of 13.04%. This set of results clearly demonstrates that
the optimisation leads to CG improvements for all prediction
methods. Additionally, by using the brightness and contrast
optimisation the proposed method surpassed the results of [8]
even without the use of the embedded decider. The highest
coding gain of 13.20% was obtained when using the proposed
method combined with the embedded decider and optimisa-
tion. The obtained results reinforce the efficiency of the pro-
posed prediction approach in enhancing the coding efficiency
of PET images, namely when the embedded decider is used.

Table 4. PET-CT pair average CG(%).
Brightness and Contrast

Optimisation [8] Proposed Proposed with
embedded decider

- 0.70 0.70 1.30
✓ 0.70 0.76 1.32

The coding efficiency of the combined PET-CT image
pairs was also evaluated, and the results are shown in Table
4. It is worth noting that the CG values are lower than those
of the PET modality alone discussed earlier. This happens
since CT images have a much larger size and higher coding
efficiency compared to PET images. However, as discussed
about Table 3, the usage of the optimisation procedure and
the inclusion of the embedded decider further improves the
CG value in PET-CT pairs, where the value of 1.32% was
achieved when using both proposed configurations.

4. CONCLUSIONS

This paper introduces a novel approach to enhance the loss-
less coding efficiency of paired images using the VVC stan-
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dard by effectively leveraging multimodal medical image in-
formation. The proposed approach includes an embedded de-
cider that dynamically selects the optimal prediction method
for each frame based on its coding efficiency, thereby im-
proving the overall performance. The multimodal prediction
method outperforms previously proposed cross-modality cod-
ing schemes, achieving coding gains of up to 13.20% com-
pared to the reference VVC intra-coding of the corresponding
PET image. The experimental results demonstrate effective-
ness of the proposed method in improving the efficiency of
lossless coding for multimodal medical images.

5. REFERENCES

[1] J. C. Waterton and Martin Braddock, Chapter 1 Medical
Imaging: Overview and the Importance of Contrast, pp.
1–20, Royal Society of Chemistry, 2012.

[2] S. Coughlin and D. Roberts et al., “Looking to tomor-
row’s healthcare today: a participatory health perspec-
tive,” Internal Medicine J., vol. 48, no. 1, pp. 92–96.

[3] J. Xingyu, M. Jiayi, and et al. X. Guobao, “A review
of multimodal image matching: Methods and applica-
tions,” Information Fusion, vol. 73, pp. 22–71, 2021.

[4] T. Vagenas, T. Economopoulos, and C. Sachpekidiset
al., “A decision support system for the identification
of metastases of metastatic melanoma using whole-body
fdg PET/CT images,” IEEE J. of Biomedical and Health
Informatics, vol. 27, no. 3, pp. 1397–1408, 2023.

[5] Z. Yu, X. Han, and S. Zhang et al., “Mousegan++: Un-
supervised disentanglement and contrastive representa-
tion for multiple MRI modalities synthesis and struc-
tural segmentation of mouse brain,” IEEE Tran. on Med-
ical Imaging, vol. 42, no. 4, pp. 1197–1209, 2023.

[6] O. Dalmaz, M. Yurt, and T. Çukur, “ResViT: Residual
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Abstract—Lung nodule classification in Computed 

Tomography is an essential procedure for the diagnosis of lung 

cancer. Though some automatic methods have been proposed 

with high accuracy, the performance of these methods was 

heavily dependent on the amount and quality of data annotation 

and sensitive to the distribution of tissue density in CT. In this 

study, we propose a novel lung nodule classification system 

based on convolutional neural networks, achieving nodule 

detection and classification with good accuracy even using 

coarse annotated and low-quality data. Firstly, we constructed 

a nodule center-point detection method to predict the coarse 

coordinate of the nodule and the distance offset between the 

corner-points and the center-point of the nodule. Then, we 

extracted the multi-scale region of interest s and shape features 

of the nodule within an region of interest and then input them 

into the nodule classification network for predicting the nodule 

grade and type label. The proposed method was tested on 822 

cases yielding a precision of 0.962 and a recall of 0.934 for nodule 

detection and an accuracy of 0.759 for nodule grade 

classification.  

Keywords—convolutional neural network, classification, 

lung nodule, Computed Tomography 

I. INTRODUCTION  

Automatic lung nodule classification in CT (Computed 

Tomography) plays a crucial role in the early detection and 

diagnosis of lung cancer[1]. Lung nodules in CT images are 

small, round or oval-shaped abnormalities found in the lungs, 

and they can be an early sign of lung cancer or other lung 

diseases. However, manual detection and classification of the 

nodules is time-consuming, labor-intensive, and suffers from 

cognitive variability. Therefore, there is an urgent need for 

the development of automatic lung nodule classification 

systems, aiming to assist radiologists in detecting and 

characterizing these nodules in CT scans more efficiently and 

accurately. In general, the computer-aided diagnosis system 

of lung cancer involves analyzing the large volumes of image 

data generated by CT scans and identifying potential nodules 

for further evaluation. The main challenges for this task are 

the complex shape variability, low contrast, and poor signal-

to-noise ratio of CT. 

 To overcome the problems, several traditional machine 

learning based lung classification methods had been proposed. 

For example, Lee et al. [2] proposed an ensemble 

classification aided by clustering method to automatically 

predict the nodule grade of 2D CT images with a high 

sensitivity of 0.98 and specificity of 0.97. In [3], the authors 

utilized 3D active contour method to segment the nodule and 

linear discriminant analysis classifier to classify the  grade of 

nodule. However, these traditional machine learning models 

were sensitive to the image noise. Recently, encouraged by 

the development of deep learning (DL) technology, some DL 

based automatic lung detection and classification models 

were presented. Xie et al. [4] utilized the Faster R-CNN 

(convolutional neural networks) to construct a lung nodule 

detection for 2D CT image, obtaining a good accuracy on the 

public dataset. To reduce the false-positive rate of nodule 

detection, El-Regaily et al. [5] proposed a multi-view 3D 

CNN to output the multi-view detection results and classify 

the detected nodules. Similarly, the authors in [6] utilized 

vision transformer model to locate and classify lung nodule 

in CT. However, the performance of these models heavily 

depends on the amount and quality of annotation data. 

In this study, we propose a novel nodule classification 

system based on convolutional neural networks for CT 

images, achieving a good agreement with the manual 

detection and classification results. The main innovations of 

our study include: i) A fully automatic and accurate system 

for nodule grade and type classification in CT; ii) A novel 

design of network architecture to detect the region of interest 

(ROI) of nodule allowing a rough bounding box of the nodule 

to train the model; iii) An effective verification that the 

handcrafted shape feature is helpful to nodule classification, 

iv) A new design of multi-scale classification networks fusion 

method to improve the nodule classification performance.  

Figure 1. The structure of the proposed lung nodule classification 

system 
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II. MATERIELS AND METHOD 

Figure 1 is a schematic depiction of the main stages in 

our method. In the first stage, we proposed a nodule detection 

network based on the corner-point concept and U-Net [7] to 

locate the nodule in the 3D images. To reduce the negative 

effect of the surrounding tissue and normalize the 3D size of 

CT images, a simple pre-process was utilized by first 

thresholding out lung tissue (lung CT) and then do 

morphological processing before nodule detection. Based on 

the output from first stage, multi-scale ROIs are implemented 

and B-scale filter were utilized [8] to compute the B-scale 

values of each pixel in the ROIs, representing the largest ball 

of homogeneous intensity. Then, we input the multi-scale 

ROIs with B-scale feature maps into the nodule grade and 

type classification networks with the soft-voting method for 

classifying the grade and type label of the lung nodule (2nd 

stage in Figure 1).  

A. Data Acquisition, Annotation, and Augmentation 

Table 1. Summary of the Lung CT data set  

Dataset 
Benign Malignant 

GGO PSN SN GGO PSN SN 

Training set 
(subjects) 

61 63 240 470 517 293 

Validation set 

(subjects) 
10 11 40 78 86 49 

Testing set 
(subjects) 

30 31 120 235 259 147 

Total 

(subjects) 
101 105 400 783 862 489 

Image Size 
(voxel) 

695x695x5~695x695x46 

Data acquisition and annotation are essential prerequisites 
for supervised learning. We collected 2,740 axial CT scans 
with data allocation for training, validating and testing in 
Table 1. Each nodule was annotated with a grade label 
(Benign vs. Malignant) and a type of label (GGO (ground-
glass opacity), PSN (part-solid), and SN (solid)), as shown in 
Figure 2.  

In this study, we divided the CT images of subjects into 
training, validation, and testing set by the ratio of 6:1:3.  To 
increase the diversity of samples, we utilized four data 
augmentation methods to enhance the training set, including 

annotation position drift, contrast adjustment, image rotation, 
and image resize. The total training data is 26,304 CT images. 

B. Pre-processing for Lung CT Images 

The tissue surrounding the lungs produces abundant 
unnecessary computation. We designed pre-processing 
operations including: i) segmenting the low-density regions 
using the threshold for lung tissue, ii) searching the connected 
regions and remaining the two smallest regions as the lung 
mask, and iii) calculating rectangle boundaries of lung mask 
and extracting the lung ROI images. To unify the image size 
of training, we resized the lung ROI images to 448x448x16 
using linear interpolation method. In our experiments, the 
threshold value was set to 120. 

C. Nodule Detection Network  

In this study, we only have the rough location from a 
clinician, who just utilized a red elliptic (Figure 2) of suitable 
size to represent the coarse location of nodules in the CT 
images in order to save time. We designed a center-point (of a 
nodule) based detection network and calculated the top-left 
and bottom-right points of elliptic annotation as the ground 
truth label. Based on the previous work [9], we designed a 
novel nodule detection network CNN based on U-Net [7] to 
segment the center-point of nodule ROI and predict the 
distance offset between the top-left and bottom-right points 

and center-point of nodule ROI, as shown in Figure 4.  

Figure 3. The pre-processing operations for lung CT images 
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Figure 2. Examples of lung images annotation   

Figure 4. The structure of the proposed lung nodule detection network 
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The proposed network includes four modules: i) the 
backbone network (modified VGG19 [10]) for learning the 
multi-scale and level feature from the input image, including 
16 convolutional layers with kernel size of 3x3 and stride of 2, 
4 max-pooling layers with kernel size of 2x2 and stride of 2, 
5 batch-normalization layers, and 3 dropout layers with the 
dropout ratio of 0.6, ii) the feature fusion network for 
integrating the multi-scale feature maps with size 448x448x32, 
224x224x32, 112x128x32, 56x56x32, and 28x28x32 together 
as a feature pyramid, including 4 up-sampling layer based on 
linear interpolation method with the scale factor of 2, 8  
convolutional layers with kernel size of 3x3 and stride of 1, 4  
convolutional layers with kernel size of 1x1, stride of 2 and 
output channel number of 32, and 4 concatenation layers 
based on channel stacking operation, and iii) the pixel-wise 
classifier for predicting the probability of each pixel attributed 
to nodule center-point category,  including 1 channel attention 
module [11], 2 convolutional layers with kernel size of 3x3 
and stride of 1, 2 dropout layers with ratio of 0.6, and 1 soft-
max function, and iv) the pixel-wise regressor for predicting 
the distance between each pixel and top-left and bottom-right 
points, with the same structure of pixel-wise classifier but 
without soft-max function. 

The nodule center-point segmentation result can be used 

to calculate the coarse coordinate of the nodule. To improve 

the nodule detection performance, we proposed a post-

processing method by fusing the center-point and distance 

offset information. Given the nodule center-point 

segmentation probability map 𝑃(𝑥) ∈ ℝ448×448×1  and the 

distance offset map 𝑂(𝑥) ∈ ℝ448×448×4 , our model would 

search the maximum point (𝑥𝑚, 𝑦𝑚)  in 𝑃(𝑥)  as the center-

point of nodule and compute the coordinate of top-left and 

bottom-right points (𝑥𝑇𝐿 , 𝑦𝑇𝐿  , 𝑥𝐵𝑅  , 𝑦𝐵𝑅 ) of nodule ROI by 

adding the coordinate of center-point with the offset value as 

following: 

𝑥𝑇𝐿 = 𝑥𝑚 + 𝛼𝑂(𝑥𝑚, 𝑦𝑚 , 0), (1) 

𝑦𝑇𝐿 = 𝑦𝑚 + 𝛼𝑂(𝑥𝑚, 𝑦𝑚 , 1), (2) 

𝑥𝐵𝑅 = 𝑥𝑚 + 𝛼𝑂(𝑥𝑚 , 𝑦𝑚, 2), (3) 

𝑦𝐵𝑅 = 𝑦𝑚 + 𝛼𝑂(𝑥𝑚, 𝑦𝑚, 3), (4) 

where 𝛼 represents the distance scale factor with a constant 

value. Then, we employed the coordinate of top-left and 

bottom-right points to extract the nodule ROI from the lung 

ROI images. 
To train this model, we defined the loss function by 

combing the cross-entropy with L2-norm loss functions as 
follows: 

𝐿(𝑆𝐺 , 𝑂𝐺; 𝑊𝐷) = −
1

𝑁
∑ log(𝑃(𝑆𝐺(𝑥)|𝑥))

𝑥∈Ω

+

𝜆1

𝑁
∑‖𝑂𝐺(𝑥) − 𝑂(𝑥)‖2

𝑥∈Ω

+ 𝜆2‖𝑊𝐷‖1, (5)

 

  
where 𝑆𝐺(𝑥)  and 𝑂𝐺(𝑥)  represent the ground truth of the 

center-point label and distance offset value at pixel 𝑥 , 

𝑃(𝑆𝐺(𝑥)|𝑥)  represents the probability value of pixel 𝑥 

classified as ground truth 𝑆𝐺(𝑥), 𝑂(𝑥) denotes the predicted 

distance offset at pixel 𝑥, 𝑊𝐷 and Ω represent the parameters 

of the network and image domains, 𝑁 is the total number of 

pixels, ‖⋅‖1 and ‖⋅‖2 are the L1-norm and L2-norm, and 𝜆1 

and 𝜆2 serve as trade-off parameters among the three terms. 

D. Multi-scale Nodule Classification Network with Soft-

voting 

As shown in Figure 5, we proposed a nodule 

classification network using VGG-19 [10] network and B-

scale feature map, including three steps: i) extracting the 

nodule ROI with image size 128x128x16 from the original 

3D CT image based on the nodule detection result and 

computing the B-scale feature of the ROI, ii) learning the 

fusion feature of nodule from the nodule ROI and B-scale 

feature map, and iii) predicting the grade or type label of 

nodule ROI by the soft-max classifier. The structure of 

nodule classification network is similar with the VGG-19 

network, adding the normalization layer and channel 

attention module into the network to improve the feature 

learning ability. In addition, we utilized the fully connection 

layer and soft-max function for predicting the possibility of 

the inputted nodule ROI belongs to different nodule grades 

and types. We utilized the focal loss to define the loss 

function of nodule classification as follows: 

  

𝐿(𝐿𝑖 , 𝐼𝑖; 𝑊𝐶) = −
1

𝑀
∑ 𝛼𝑖(1 − 𝑃𝐶(𝐿𝑖|𝐼𝑖))𝛽log(𝑃(𝐿𝑖|𝐼𝑖))

𝑀

𝑖=1

+

+𝜆3‖𝑊𝐶‖1, (6)

 

where 𝐿𝑖  represents the ground truth label of image 𝐼𝑖 , 
𝑃𝐶(𝐿𝑖|𝐼𝑖) denotes the possibility value of image 𝐼𝑖  as ground 
truth label 𝐿𝑖 , 𝛼𝑖  and 𝛽  are the category weight value and 
modulating factor, 𝑀 is the total number of samples, and 𝑊𝐶 
represents the parameters of nodule classification network. 

By analyzing the experimental results, we found that the 

nodule ROI size has an obvious effect on nodule 
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classification accuracy. In general, the predicted 

classification possibility value of nodule would be varied 

with ROI size. To improve the nodule classification 

performance, we trained 5 nodule classification networks 

using 5 different ROI sizes, including 192x192x16, 

160x160x16, 128x128x16, 96x96x16, and 64x64x16, and 

fusing the predicted classification possibility by soft-voting 

method as follows: 

𝑃𝑚(𝐼𝑗) = ∑ 𝑤𝑖𝑃𝑖(𝐼𝑗)

5

𝑖=1

, (7) 

where 𝑃𝑖(𝐼𝑗)  and 𝑃m(𝐼𝑗)  represent the output classification 

probability of i-th classifier and multi-scale classifier for the 

image 𝐼𝑗 , and 𝑤𝑖  denotes the weighted value of the i-th 

classifier. The weight value 𝑤𝑖  can be calculated as follows: 

𝑤𝑖 =
auc𝑖

∑ auc𝑗
5
𝑗=1

, (8) 

 

where auc𝑖 represents the AUC (Area Under Curve) value of 

the i-th classifier on the validation data set.  

III. EXPERIMENTS AND RESULTS 

A. Experimental details 

In this study, we utilized the open source library 
TensorFlow to implement the proposed nodule detection and 
classification models and the training data in Table 1 to train 
models. All experiments were conducted on a PC with an Intel 
i7-7700K CPU and two NVIDIA 1080 Ti GPUs. The hyper-
parameters for optimizing the models were as follows: 
learning rate (0.00001), batch size of training data (50), and 
number of iterations (500). In addition, we employed the same 
conditions to train several classic detection and classification 

networks, including Nodulenet [12], SANet [13], AlexNet 
[14], VGG-19 [10], ResNet-18 [15], and ViT [16]. 

B. Metrics 

We employed our model and comparison algorithms to 

detect and classify the nodule on the testing set for evaluating 

the performance of all models. We applied several metrics to 

quantitatively analyze the nodule detection performance as 

following: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
, (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
, (10) 

where TP, FP, and FN represent the true positive, false 

positive, and false negative results, respectively. In our 

experiments, when the center-point of the detected nodule 

locates in the red circle, it would be viewed as a true positive 

one otherwise a false positive one. Similarly, when a manual 

annotated nodule is not detected by the automatic method, it 

would be viewed as one false negative one.  

To quantitatively analyze the nodule classification 

performance, we computed the classification accuracy (Acc) 

as below: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (11) 

where TP, TN, FP, and FN represent the true positive, true 

negative, false positive, and false negative results, 

respectively. Besides, we changed the classification 

thresholding value from 0.05 to 0.95 and computed the true 

positive rate (TPR) and false positive rate (FPR) as following: 

Figure 6. Examples of nodule detection (in green boxes). The green rectangle and red elliptic represent the 

automatic and manual nodule detection results. (a) Ground truth, (b) Nodulenet, (c) SANet, (d) proposed nodule 

detection network, (e) proposed nodule detection network with pre-processing method, and (e) proposed nodule 

detection network with pre- and post-processing methods.  

(a) (b) (c) (d) (e) (f) 
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𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (12) 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
. (13) 

Then, we plotted the ROC curve of nodule classification, 

in which the horizontal and vertical axis are the TPR and 

FPR values.  

C.  Nodule Detection Results 

As shown in Figure 6, we show four nodule detection 
results in CT images. We find that our method obtains good 
agreement with the manual ground truth and that the pre- and 
post-processing methods can improve the accuracy of nodule 
detection. In addition, the false-positive problem of Nodulenet 
and SANet is very obvious. The main reason is that the nodule 
detection performance of the two networks is highly 
dependent on the quality of annotation data. Table 2 
summarizes the quantitative results of nodule detection for all 
models. Our method achieves a high precision vale (0.962) 
and a high recall value (0.934), meaning that our method has 
a low false-positive and false-negative rates. The comparison 
among the performance value in the last three rows shows that 
the pre-processing operations can slightly increase the 
precision and recall of nodule detection and the post-
processing method can remove most false-positive detection 
results with decreasing a little recall value.  

Table 2. Nodule detection performance on the testing dataset 

Method 
Metrics 

Precision Recall 

Nodulenet [12] 0.552 0.785 

SANet [13] 0.636 0.864 

Proposed model 0.682 0.923 

Proposed model + Pre-
processing method  

0.786 0.963 

Proposed model + Pre-and 
Post-processing method 

0.962 0.934 

 

D. Nodule Grade (benign vs. malignant) Classification 

Results 

Table 3. Nodule grade classification performance on the testing set 

Method 
Metrics 

Acc AUC 

AlexNet  0.646 0.684 

VGG-19 0.683 0.716 

ResNet-18  0.723 0.723 

ViT (patch size=8, depth=6)  0.708 0.704 

Proposed model (Nodule ROI size = 
128) 

0.716 0.72 

Proposed model (Nodule ROI size = 

128) + B-scale feature 
0.732 0.753 

Proposed model (Nodule ROI size = [64, 

96, 128. 160, 192]) + B-scale feature + 

Soft-voting method  

0.759 0.808 

 

As illustrated in Table 3, we compare the quantitative 
grade nodule classification results of our method with other 
classification models. By analyzing the experimental data, we 
can see that our method obtains the highest accuracy and AUC 
values. In addition, we show the ROC curve of all models in 
the Figure 7, which can intuitively demonstrate the nodule 
grade classification performance differences among the 

models. We can find that our model outperforms other 
comparative methods and the B-scale feature and soft voting 
of multi-scale classifiers can improve the nodule classification 
accuracy. The lung nodule grade classification performance of 
our method seems to be lower than some existing nodule 
classification systems [17, 18]. But keep in mind that we tried 
to build our system more robust and practical following the 

real clinician operations. In this study, clinicians have much 
less burden to label the data we used. In general, the 
annotation requirements and regularity of dataset in this study 
are much lower in our system than others [17,18].  

E. Extending: Nodule Type (GGO, PSN and SN) 

Classification  

In this study, we trained another proposed nodule 

classification to predict the type label of nodules, achieving an 
accuracy of 0.878. Figure 8 illustrates the confusion matrix for 
nodule type classification, demonstrating that our method 
obtains a high true-positive rate and low false-positive rate 
both for GGO, PSN, and SN nodule classification. Besides,  
the ROC curve in Figure 9 illustrates that the nodule type 
classification performance of our method with high accuracy. 
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Figure 8. Confusion matrix for nodule type classification 
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Compared Figure 7 with Figure 9, we can find that there is an 
obvious difference between grade and type classification 
performance. That is interesting and has never been reported 
according to our knowledge. The reason might be that the 
nodule grade classification is more sensitive to the tissue 
density value of the nodule. While the nodule type 
classification is more dependent on one the edge information 
of the nodule.   

IV. CONCLUSIONS 

In this paper, we utilized CNN and coarse annotated 
dataset to construct an automatic lung nodule classification 
system for CT images for improving the accuracy and 
efficiency of lung cancer diagnosis. Our approach contains 
two steps: i)  detecting the location of the nodule center-point 
and estimating the distance offset between the corner points 
and center-point of the nodule for generating the ROI of the 
nodule; 2) classifying the nodule grade and type label using 
the multi-scale classification networks with the handcrafted 
shape features and soft-voting method. Experimental results 
demonstrate that our approach achieves a good agreement 
with manual detection and classification of lung nodules in 
CT. Considering the difference in shape and texture among 
nodule types, we are analyzing the nodule grade classification 
performance in different types of nodules. The proposed 
approach adopted U-Net but can be easily propagated to other 
architectures, and is much potential for multiple applications 
of object localization and classification. 
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Abstract—Due to hardware limitations, multispectral videos
often exhibit significantly lower resolution compared to standard
color videos. These videos capture images in multiple bands
of the electromagnetic spectrum, providing valuable additional
information that is not available in traditional RGB images. This
paper proposes a Bayesian approach to estimate super resolved
images from low-resolution spectral videos. We consider adjacent
frames from a video sequence to provide a super-resolution
image at a time. We include in our proposal the motion between
adjacent frames and unlikely to the literature, we estimate
the blur and noise while reconstructing the higher resolution
image. Experimental results on spectral videos demonstrate the
effectiveness of our approach in producing high-quality super
resolved images.

I. INTRODUCTION

Multispectral imaging has become a major asset in
various fields such as remote sensing, medical imaging, and
surveillance. However, the acquired images are often of low
resolution, which limits their usefulness in applications that
require high-quality images. Super resolution (SR) techniques
aim to overcome this limitation by reconstructing high-
resolution images from low-resolution ones. In their work,
Nasrollahi and Moeslund [1] emphasized the importance of
conducting a comprehensive literature review in this particular
domain.

While significant progress has been made in the field of
spectral image super resolution [2], achieving high-quality
super resolution for multispectral video sequences remains a
challenging task. Theses challenges arise from various factors,
including arbitrary motion of objects and cameras, unknown
noise levels, and the presence of motion blur and point spread
functions that introduce unknown blur kernels. Prior work
often relied on oversimplified assumptions, assuming simple
parametric motion forms and known blur kernels and noise
levels. However, these assumptions do not hold in practical
scenarios, making the super resolution problem more intricate
and demanding a more comprehensive approach. Therefore, to
develop a practical super resolution system, it is necessary to
simultaneously estimate the optical flow [3], noise level [4],
and blur kernel [5] ,in addition to reconstructing the high-
resolution frames. Since each of these sub-problems has been
thoroughly investigated in the field of computer vision, it is
natural to integrate them into a unified framework without
making oversimplified assumptions.

In this study, we introduce a Bayesian framework
using Maximum A Posteriori knowledge (MAP) [6] for
reconstructing super resolved multispectral images from low-
resolution multispectral videos. Our method takes advantage of

the temporal, spatial and spectral correlation between adjacent
frames to enhance the super resolution process. Using a
sparsity prior for the high-resolution image, flow fields, and
blur kernel. The MAP inference iterates between optical flow,
noise estimation, blur estimation, and image reconstruction
to estimate the optimal values for these parameters. This
approach enables us to handle different types of blur kernels
and noise models, making our method adaptable and robust
in a range of scenarios. Despite different noise levels and
blur kernels, our method successfully reconstructs both large-
scale structures and small texture features in difficult real-
world sequences. The remainder of this paper is organized
as follows. In Section 2, we provide a review of related
works in the field of spectral super resolution, highlighting
the limitations of existing approaches. This review serves as
a foundation for understanding the motivation behind our
proposed Bayesian framework. Section 3 presents the core
of our method, focusing on the image reconstruction process
using the Bayesian MAP approach. We describe the key
components and their interplay in achieving high-quality super
resolution for multispectral video sequences. In Section 4,
we present the results obtained from applying our Bayesian
framework to real-world multispectral video sequences. We
discuss the performance of our method and provide in-depth
analysis and discussions on the reconstructed super-resolved
images before to conclude.

II. RELATED WORK

A variety of methods have been developed for multispectral
super resolution, based on different mathematical models, deep
learning architectures, or physical priors. In this section, we
provide a review of some of the most representative methods
in this field, organized by their underlying principles and
approaches.

A. Single Frame Super Resolution

Super resolution from a single frame has been an active
area of research in computer vision. Chang et al. [7] made
significant contributions to the field, and their work serves as
an important foundation. Early research in super resolution
addressed the ill-posed problem of reconstructing high-
resolution images from low-resolution frames [8]. Schultz
et al. [9] utilized spatial priors to overcome the absence
of constraints. Bascle et al. [10] considered motion blur
using an affine motion model, while Hardie et al. [11]
jointly estimated translational motion and the high-resolution
image. However, these motion models have limitations in
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Fig. 1: super resolution diagram. To create the observed low-resolution multispectral sequence, the high-resolution
sequence is downsampled, each frame is smoothed with a blur kernel, and corrupted with an uncorrelated noise.

capturing the complexity of real-world sequences. Baker and
Kanade [12] proposed an approach using optical flow and a
parametric motion model to handle motion in super resolution.
Fransens et al. [13] introduced a probabilistic framework based
on Expectation-Maximization algorithm, but their assumptions
about blur kernels and Gaussian priors may affect edge
preservation. Recent advancements in optical flow, such as
those presented by Brox et al. [14], have provided more
reliable techniques based on sparsity priors. On a different
scoop, deep learning-based approaches have shown promising
results in super resolution of images and videos. However,
these methods require a large amount of training data and
are computationally expensive [15]. Moreover, Multispectral
database are still limited, compared to the RGB database [16].

B. Multi Frame Super Resolution

Super resolution techniques that utilize video sequences
or multiple frames have also been explored. Irani et al. [8]
proposed a method for enhancing the physical spatial
resolution of multispectral images through logical reallocation
of spectra. Takeda et al. [17] employed 3D kernel regression
inspired by the non-local means technique for video denoising,
exploiting spatiotemporal neighboring relationships for video
up-sampling. While their technique still requires motion
estimation in locations with significant motion, it offers a
different approach to super resolution from video sequences.
Liu and Freeman [18] developed a video denoising method
with accurate motion estimation despite heavy noise. We aim
to leverage these advancements in optical flow for more precise
super resolution in our work.

In the domain of multispectral image super resolution,
Vega et al. [19] proposed a Bayesian approach for super-
resolution reconstruction of multispectral images using
pansharpening. Pansharpening is the process of fusing high-
resolution panchromatic and low-resolution multispectral
images to create a single high-resolution color image.
The proposed method incorporates prior knowledge on the
expected characteristics of multispectral images, including
smoothness within each band and correlation between

bands. Zhi-Wei et al. [20] introduced an algorithm called
SRIF (Multispectral Image Super-Resolution via RGB Image
Fusion and Radiometric Calibration) that fuses low-resolution
multispectral images with high-resolution RGB images to
reconstruct high-resolution multispectral images. However, the
linear relationship assumption between multispectral and RGB
images may not always hold true, and the requirement of
both low-resolution multispectral and high-resolution RGB
images can be limiting. Lanaras et al. [21] developed a convex
optimization method for improving the spatial resolution
of lower-resolution bands in multispectral images. Their
adaptive regularizer preserves edges and learns discontinuities,
assuming these discontinuities are located in the same
positions across all bands, which may not always hold true
in practice.

III. MULTISPECTRAL SUPER RESOLUTION: IMAGING
PIPELINE AND PARAMETER ESTIMATION

Our objective is to recover the high resolution sequence
{I} from the low resolution sequence {J}. In order to take
advantage of multispectral video, we attempt to estimate the
super resolved frames Ii using the neighboring low resolution
frames Ji−1, Ji, Ji+1. We consider that the low resolution
frame Ji is the result of down-sampling of Ii, smoothed
with a blur kernel and corrupted with noise. Furthermore, we
assume that the noise and kernel blur are consistent across all
spectral bands. It simplifies the estimation process and reduces
computational complexity. Thus the model of obtaining Ji is
illustrated in Figure 1.

In order to estimate the high-resolution sequence and reverse
the decay of resolution mentioned above, we need to estimate
the noise level, the blur kernel and the motion. Among the
unknown parameters in the generative models, the smoothing
kernel K, which is equivalent to point spread functions in the
imaging process or the smoothing filter when video is down
scaled, parameter θi which controls the noise, and wi which
represent the motion information between consecutive frames.
For this we will use a Bayesian method called MAP as defined
in [22] and in the equation (1).
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(1)
{I ′,K ′, {θi} ′, {wi} ′}
= argmax

I,K,{θi},{wi}
p (I,K, {θi} , {wi} |{Ji})

The model estimates the unknown parameters, such as the
smoothing kernel and noise level, using adjacent frames and
applies Bayesian MAP inference to find the optimal solution.
The goal is to maximize the posterior probability, which is
the product of prior and likelihood according to [23], and
developed in equation (2).

(2)p(I,K, {θi}, {wi}|{Ji}) ∝ p(I)p(K)
∏
i

p(wi)
∏
i

p(θi)

p(J0|I,K, θ0)
1∏

i=−1,i̸=0

p(Ji|I,K, θi, wi)

Where i is the mutlispectral frame index. We assume an
exponential distribution for the likelihood in order to handle
outliers [24] (equation (3)).

(3)p (Ji|I,K, θi) =
1

Z (θi)
exp {−θi||Ji −DBFwiI||} ,

where Z (θi) = (2θi)
−dim(I) and especially the parameter

θi represents the noise level of frame i. The matrices D and B
stand for respectively, down sampling and filtering with kernel
blur K. Moreover, Fwi

is the warping matrix that correspond
to the flow wi.

To model the priors of image I , optical flow field wi

and blur kernel K, we used sparsity on derivative filter
responses. Sparsity on derivative filter responses is a technique
used to model the priors of image, optical flow field, and
blur kernel in the Bayesian model for super resolution. The
sparsity constraint encourages the filter responses to be mostly
zero, except for a few significant values, which helps to
reduce noise and improve the accuracy of the estimation.
This technique is commonly used in signal processing and
computer vision applications [25] to promote efficient and
robust representations of signals and images (See equations
(4) , (5) , (6)). For more mathematical explanation, we refer
the reader to this paper [26].

(4)p (I) =
1

ZI (η)
exp {−η||∇I||}

(5)p (wi) =
1

Zw (λ)
exp {−λ (||∇ui||+||∇vi||)}

(6)p (K) =
1

ZK (γ)
exp {−γ||∇K||}

Where ZI(η) (equation (4)), Zw(λ) (equation (5)), and
ZK(γ) (equation (6)) are normalization constants that depends
only on η, λ and γ. Moreover, ∇ (equation (7)) is defined as
the gradient, by extension

||∇I|| =
∑

||∇I(n)||

=
∑

(|Ix(n)|+|Iy(n)|) (7)

where Ix = ∂
∂xI , Iy = ∂

∂y I and n is the pixel index.
The flow field’s horizontal and vertical components, ui and
vi, uses the same notation. As proposed by Liu et al. [4].
We assumed that the conjugate prior for θi is a Gamma
Distribution (equation (8)) :

p (θi;α, β) =
βα

Γ (α)
θα−1
i exp {−θiβ} . (8)

Now that we have the prior and likelihood probability
distributions, we can use coordinate descend to do the
Bayesian MAP inference. Please note that the model have five
free parameters which are η, λ, γ, α, β.

A. Reconstructing High-Resolution Images

We estimate the high resolution multispectral image by
calculating the equation (9), using the most recent estimations
for the flow field wi, the blur kernel K, and the noise level θi

(9)

I ′ = argmin
I

θ0||DBI − J0||

+η||∇I||+
N∑

i=−N,i̸=0

θi||DBFwi
I − Ji||

The term θ0||DBI − J0|| measures the data fidelity or
the discrepancy between the down sampled and blurred
low-resolution image DBI and the observed low-resolution
multispectral image J0. Moreover, the term η||∇I||, enforces
sparsity on the gradient of the estimated high-resolution
image I . This term promotes smoothness in the image while
preserving edges and details. To use gradient-based methods,
we replace the L1 norm with a differentiable approximation,
which is ξ

(
x2

)
=

√
x2 + ϵ2 with ϵ = 0.001. Moreover, the

parameter η controls the strength of the sparsity regularization.
A sum over adjacent frames with i indicating current frame
index, where DBFwi

denotes convolution operation using
blur kernel estimate at ith frame index; this part encourages
consistency between consecutive frames. The overall objective
function aims to minimize differences between low resolution
input and high resolution output while also incorporating
constraints related to motion estimation. To solve this objective
function, the iteratively reweighted least squares (IRLS)
technique is employed. The IRLS [27] algorithm iteratively
estimates the high-resolution image I by updating its estimate
in each iteration.

B. Noise and Motion Estimation

We jointly estimate the flow field and the noise level on a
Gaussian image pyramid knowing the high resolution image
and the blur kernel. Therefore, the optical flow and noise
level are iteratively evaluated for each pyramidal level. In the
context of super-resolution, the Gaussian image pyramid is
created by successively applying Gaussian blurring and down
sampling operations to the original high-resolution image.
Each level of the pyramid represents a different scale or
resolution of the image. The coarsest level is the lowest
resolution image, and as we move up the pyramid, the
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(a) LR image (b) SR Bicubic (c) MAP (d) HR Image

Fig. 2: Our SR method is able to recover image details with a ×2 upsacale.

resolution increases [28]. The following equation is the closed-
form solution for the Bayesian MAP estimate for the noise
parameter θ′i =

α+Nq−1
β+Nqx̄

.

Where x̄ = 1
Nq

∑Nq

q=1|(Ji −BDFwi
I) (q) | is defined as

a sufficient statistic used to estimate the noise level in the
Bayesian MAP approach (following the convention in [28]).
Once the noise is known, the flow field wi is computed using
MAP and IRLS technique as depicted in equation (10).

(10)w′
i = argmin

wi

θi||BDFwiI − Ji||+λ||∇ui||+λ||∇vi||

The objective function is a weighted sum of data fidelity
and regularization terms, where the regularization term
λ(||∇ui||+||∇vi||) enforces smoothness of the motion field
and the high-resolution image. The optimization problem is
solved iteratively using the IRLS method, which alternates
between solving a linear system and updating the weights
based on the current estimate. Here again we approximate the
norm |x| by ξ

(
x2

)
C. Blur Kernel Estimation

Following the notation from [23], we only demonstrate
how to estimate the x-component kernel Kx given I and J0
without losing generality and assuming that the kernel K is
x− and y−separable : K = Kx � Ky , where Ky probability
distribution is the same as Kx. Therefore, we define each row
of the matrix A as the concatenation of pixels that correspond
to the filter K. Moreover, we define My : MyKx = Kx �
Ky = K. The estimation of Kx is depicted in equation (11).

(11)K ′
x = argmin

Kx

θ0||AMyKx − J ||+γ||∇Kx||

The method involves solving an optimization problem
that minimizes the difference between the low-resolution
observation and the convolution of the high-resolution image
with the estimated kernel, subject to a regularization term that
encourages spatial smoothness of the kernel. The optimization
problem is solved using the IRLS method.

IV. RESULTS AND DISCUSSIONS

In our study on multispectral SR, we utilized a publicly
available database from Benezeth et al. [29], which contains
a collection of five VNIR (Visible and Near-InfraRed)
multispectral videos containing between 250 and 2300 frames

Sample Video 1

Sample Video 2

Sample Video 3

Sample Video 4

Sample Video 5

Fig. 3: Sample of three consecutive images from different
videos. The video goes from left to right.

of spatial resolution 658 × 491. Each video in the database
consists of a sequence of frames. Each frame contains seven
spectral bands of which six are in the visible and one in the
near infra-red (NIR), illustrations of the data-set are presented
in Figure 3.

The inclusion of the NIR band allows for enhanced
perception and analysis of various materials and phenomena
that may exhibit distinct spectral characteristics in this region.
The dataset provided a valuable resource for evaluating
and benchmarking our proposed multispectral SR algorithm,
enabling us to assess its performance across different spectral
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TABLE I: Comparison of ESRGAN and MAP SR using
average PSNR, SSIM, and RMSE from the Videezy4K dataset

Method PSNR SSIM RMSE

ESRGAN ×2 32.09 0.8793 0.00634
Ours ×2 30.54 0.7467 0.076

bands and video sequences.
In our experimental analysis, we conducted a serie of

evaluations to assess the performance and effectiveness of
our proposed MAP for SR. To create a realistic simulation
of real-world imaging conditions, we initially applied a
blur operation followed by downscaling to the multispectral
sequence. [1] This step aimed to mimic the inherent limitations
and degradation commonly encountered in practical imaging
scenarios. Furthermore, to account for the presence of noise
in real data, we introduced a Gaussian noise into the blurred
and downscaled images. Figure 2 shows respectively, the low
resolution image, Bicubic SR image, MAP SR image (with a
×2 upscale) and HR image.

In order to demonstrate the effectiveness of our Bayesian
approach, we compared its results against those obtained
using conventional interpolation methods, including Bicubic,
nearest neighbor, and bilinear interpolation. By showcasing
the comparative results, we highlight the distinct advantages
and improvements achieved by our proposed Bayesian method
in terms of both quantitative metrics and visual quality. We
selected a set of 7 consecutive frames from each VNIR
video containing scenes with moving objects. We considered
factors such as object motion, scene complexity, and spectral
diversity during the selection process. Specifically, we aimed
to include scenes with diverse spectral content and varying
degrees of motion to evaluate the performance of our SR
MAP algorithm comprehensively. Furthermore, inspired by the
versatility of our multispectral SR algorithm, we explore its
applicability to RGB images. Unlike traditional SR algorithms
that handle all channels simultaneously, our method treats
each channel independently. To substantiate our findings, we
conducted a comparison with a well-established state-of-the-
art SR algorithm: ESRGAN [30] . We employed the RGB
dataset from Videezy4K, a benchmark dataset renowned for its
diverse and challenging image content. A dataset that contains
11 RGB videos and each videos contains 19 4K RGB images.

Comprehensive metrics including SSIM, PSNR and RMSE
are provided in Table II for VNIR videos. The results from
our experiments on the RGB dataset sourced from the Videezy
4K dataset are summarized in Table I.

The experimental results clearly demonstrate a significant
drop in performance when motion estimation is omitted from
the super-resolution process. Without motion estimation, the
algorithm fails to capture the temporal coherence between
frames, resulting in reduced image quality and an inability
to effectively compensate for motion-related artifacts. On
the other hand, incorporating motion estimation enables
the algorithm to align frames and accurately estimate

motion, leading to improved reconstruction quality and better
preservation of fine details. These findings highlight the crucial
role of motion estimation in achieving enhanced multispectral
super-resolution by leveraging temporal information and
mitigating artifacts.

V. CONCLUSION

In this study, we conducted a comprehensive analysis of
multispectral super resolution utilizing a publicly available
VNIR video database. Our research focused on developing a
novel Bayesian method for spectral image SR and compared
its performance against conventional interpolation techniques,
namely Bicubic, nearest neighbor, and bilinear interpolation.
Additionally, we extended our investigation to include
a comparison with a state-of-the-art method, ESRGAN,
which employs RGB image sequences. The results of this
comparative analysis showcased the promising performance of
our proposed algorithm. By leveraging neighboring frames to
enhance the reference frame without the need for any training.
This approach allowed us to achieve improved super-resolution
results and narrowed the performance gap between our method
and ESRGAN, highlighting the potential of our approach in
the field of multispectral super resolution.

In our experiments, incorporating motion estimation,
demonstrated superior performance compared to conventional
interpolation techniques. By effectively capturing temporal
coherence and reducing motion-related artifacts, our algorithm
achieved improved reconstruction quality and preservation
of fine details. The experimental results underscored the
significance of motion estimation in multispectral SR, as
neglecting this crucial aspect significantly impacted the overall
performance. Our research contributes to the understanding of
multispectral SR techniques, highlighting the importance of
leveraging temporal information to enhance the desired frame.

For future work, an interesting avenue would be to explore
the integration of joint super-resolution and demosaicing.
Combining these two tasks could lead to more comprehensive
image enhancement, addressing both spatial and color
resolution simultaneously. By leveraging the strengths of both
techniques, it is possible to achieve further improvements in
the visual quality and fidelity of spectral images.
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PSNR
MAP Bicubic Bilinear Nearest

w motion o motion w motion o motion w motion o motion w motion o motion
VS 1 35,79 34.96 27.33 26.21 27.24 2565 26.36 24.52
VS 2 34.6 33.51 31.87 30.79 30.65 29.54 30.49 29.44
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Abstract—Hyperspectral remote sensing image classification 

based upon deep learning has attracted increasing attention of 

researchers from various fields. Recently, fully convolutional 

network, provides a different perspective to cope with the pixel-

wise classification of hyperspectral image. However, due to the 

issue of the limited sample and the diversity of samples, the fully 

convolutional network-based models which are not trained 

sufficiently generally cannot extract the discriminating spectral-

spatial features for classification. In this paper, a fully 

convolutional network with centralized spectral-spatial sample 

expansion and prior correlation evaluation is proposed for 

hyperspectral image classification. By focusing on the center 

pixel, even if the samples expanded by the centralized spectral-

spatial sample expansion module are in different scales, which 

remains the consistency of spatial structures. The prior 

correlation evaluation module then emphasizes the important 

areas of the expanded samples to help the residual fully 

convolutional network extract the multi-scale discriminating 

spectral-spatial features for classification. Experimental results 

on two classic data sets confirm the structural rationality of the 

proposal and its outstanding classification performances 

compared with the state-of-the-arts. 

Keywords—hyperspectral image classification, centralized 

spectral-spatial sample expansion, prior correlation evaluation, 

fully convolutional network, deep learning 

 

I. INTRODUCTION 

Tremendous advancements of the spectral and spatial 
resolutions of imaging sensors enable hyperspectral remote 
sensing image to acquire subtle spectral reflectance energy 
and abundant spatial distributions from the surface of Earth 
[1]. Such rich information provides solid support for better 
classification. Thus, hyperspectral image (HSI) classification 
has drawn growing attention of researchers from various fields, 
such as agriculture [2], military [3], urban planning [4], etc. 

Conventional machine learning algorithms, including k-
nearest neighbor [5], support vector machine [6], and so on, 
were exploited to deal with HSI classification. Although they 
received good classification accuracy, there are still some 
deficiencies which are difficult to mitigate. On one hand, these 
methods are not good at modeling the deep feature 
representation which is important for precise recognition, 
especially when HSI contains hundreds of bands [7]. On the 
other hand, some of them process the spectral or spatial 
information merely, which curbs the complementation of 
different types of features. 

During the past decade, with the continuous upgrade of 
computational hardware, deep learning algorithms have 
reaped unprecedented achievement and become the dominant 
methods for image analysis. Earlier deep learning models for 
HSI classification, such as deep brief network [8], long short-
term network [9], were used to extract the high-level spectral 
features from each pixel. However, due to the scarcity of 
spatial features, the classification results of these models are 
still unsatisfactory. Thanks to the emergence of convolutional 
neural network (CNN) [10], the feature extraction of HSI has 
been made great improvements [11], [12]. Spectral features 
can be extracted by 1-D CNN with less parameters. Spatial 
features can also be extracted by 2-D CNN while preserving 
the original spatial layouts. To integrate both kinds of features, 
HSI cube/patch, which contains the center pixel to be 
classified and its neighborhoods, has become the popular 
sample for HSI classification. The power of CNN has received 
extensive recognition and many techniques, including residual 
connection [13], dense connection [14], and capsule units [15], 
were combined with CNN to elevate the feature representation 
for classification performances. 

Recently, fully convolutional network (FCN) [16] was 
proposed to resolve the problem that the arbitrary sizes of 
images cannot be well handled with a CNN-based model. The 
FCN adopts convolutional layers in the whole model for 
feature extraction and classification, which received better 
results than CNN for HSI semantic segmentation [17]-[19]. 
For example, a well pretrained deep FCN was introduced to 
explore the multiscale spatial structural information of the 
whole data set [20], [21]. But due to the different characteristic 
of HSI data sets, it is generally hard to prepare an appropriate 
pretrained model. Considering the issue of the limited samples, 
a patch-based training pattern with sparse point labels was 
proposed to increase samples for training, which relieved the 
insufficient training of model to some extent [22]. To further 
improve the classification accuracy, data enhancement, such 
as flip, rotation, rearrangement, was applied to produce more 
patches to meet the requirement of thorough optimization [23], 
[24]. A context-aware module was designed to help the FCN 
focus on spatial context dependency existed in different region 
of land-cover [25]. Samples with multi-view, including sub-
pixel view, pixel view, and supe-pixel view, were sent to FCN 
to obtain more accurate prediction [26]. 

Although these methods have received good classification 
performances, there are still some deficiencies to be addressed. 
First, the HSI patch-based FCN models need a number of 
samples to avoid the issue of over-fitting. Some common data 
augment method, such as rotation, rearrangement, exert 
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usually small improvement on classification results. This is 
because that convolution is not sensitive for orientation and 
position and the new spatial structures generated by the 
rearrangement method may be mutual or meaningless. Hence, 
an effective data augment method which takes the 
characteristics of HSI patch into account is demand for 
training the model. Second, due to the diversity of the pixel in 
a sample, it is generally difficult for existing methods to pay 
attention to the relevant spatial areas in samples, thereby 
hampering the representation of the discriminating spectral-
spatial features. To mitigate these drawbacks, this paper 
proposes an FCN model which adopts the centralized spectral-
spatial sample expansion (CSSSE) method and the prior 
correlation evaluation (PCE) for HSI classification. The 
CSSSE can infer the virtual pixel by considering the spectral 
and spatial correlations between real neighboring pixels at the 
same time. An expanded HSI patch is centered on the center 
pixel, which maintains the consistency of spatial structures. 
The PCE aims to highlight the relevant areas by assessing the 
relevancy between the center pixel and its neighborhoods. 
With the help of the two modules, the subsequent FCN can be 
well trained to extract more discriminating spectral-spatial 
features from the multi-scale samples. Experimental results 
confirm the effectiveness of the proposal and its outstanding 
classification performance. 

The remainder of the paper is organized as follow. Section 
II introduces the proposed model in detail. Experiments and 
analyses are presented in Section III. Finally, this paper is 
summarized in Section IV. 
 

II. METHODOLOGY 

A. Overview of the Proposed Model 

 

Fig. 1. Framework of the proposed model. Where “s”, gray dotted arrows, 

and “⊕” denote the expansion scale, the residual connections, and element-

wise addition, respectively. 

The objective of the proposed model is to acquire the 
multi-scale discriminating spectral-spatial features for HSI 
classification. As shown in Fig. 1, the model consists of a 
CSSSE module, a PCE module, and a 3-D multi-scale residual 
fully convolutional network (3-D MRFCN). First, the input, 

an HSI patch 𝒳 ∈ ℝ𝜔×𝜔×b, is sent to the CSSSE module to 
generate more samples in different scales, where 𝜔  and b 
indicate width and number of band, separately. 𝜔 is set to the 
optimal value 7. The expanded HSI patches focus on the 
center pixel and remain the original spatial structures of 
certain class. Next, the PCE module infers the relevant spatial 
areas of the multi-scale samples based on the correlation 
between the center pixel and neighborhoods. The meaningful 

pixels in the relevant areas are emphasized in the following 
stage. Finally, the 3-D MRFCN fuses the multi-scale 
discriminating spectral-spatial features extracted from the 
refined samples and assigns the most proper label for each 
pixel with softmax activation function. The more expanded 
samples and the residual connections enable the 3-D MRFCN 
to be optimized easily. 
 

B. Centralized Spectral-Spatial Sample Expansion 

 

Fig. 2. Expansion processes of an HSI cube (𝜔 = 3) with the CSSSE method. 

Where yellow pixels, green pixels, and light gray pixels indicate the center 
pixels, neighboring pixels, and virtual pixels, respectively. Red lines denote 

the spatial distance between the virtual pixel and its referenced pixels. 

An effective FCN model usually be supported by abundant 
samples. However, the limited samples and uneven number of 
samples are common for most HSI data sets. Some sample 
generation methods [23], [24], [27], such as flip, rotation, and 
rearrangement, may exert little improvement on convolution 
operation and disturb the special spatial textures of each class. 
Therefore, a novel CSSSE module is proposed to generate 
new samples in different scales. Taking the center pixel as the 
core, the CSSSE module gives enough thought to the  spectral 
similarities and spatial correlations between real pixels during 
generating virtual pixels. 

As shown in Fig. 2, the expanded HSI cubes are composed 
of the pixels from original HSI patch and virtual pixels 𝒱 ∈
ℝ1×1×b. Specifically, there are three kinds of virtual pixels, 
crossing pixel 𝒱c, horizontal pixel 𝒱h, and vertical pixel 𝒱v, in 
each expanded HSI cube. For crossing pixel 𝒱c, four closest 
real pixels (𝒳0, 𝒳1, 𝒳3, 𝒳4) are chose as the references for 
generation. While for the other two, 𝒱h  and 𝒱v , four closest 
real pixels (𝒳6, 𝒳7) and (𝒳2, 𝒳5) are chose, respectively. 

To ensure the reality of virtual pixel, the spectral similarity 
𝓈  and spatial correlation 𝓊  between virtual pixel and its 
referenced pixels are considered. Cosine distance [28], as an 
amplitude invariant metric, is utilized to measure the spectral 
similarity. The spatial correlation is evaluated based upon the 
spatial positions of virtual pixel and its referenced pixels. The 
two kinds of attributes can be described as follows. 
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Where 𝒳i, 𝒳j, 𝓇v, and 𝒸v denote ith and jth real pixels, the row 

and column of virtual pixel, separately. 

Then, the virtual pixel 𝒱ij is generated with the assistance 

of spectral similarity and spatial correlation 
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During the process, spectral similarity is weighted with the 
operation “𝓊 ⋅ 𝓈”, which assigns different spectral similarity 
for the pixels in different positions to relieve the unnatural 
spatial textures caused by same similarity. Then, the spectral 
similarity and spatial correlation are fused by the operation 
“𝓊 + 𝓊 ⋅ 𝓈” to make full use of the benefits for generation. 

There are some disparities among the generation of three 
kinds of virtual pixels. For crossing virtual pixel 𝒱c, its two 
spectral similarities, 𝓈04 and 𝓈13, and two spatial correlations, 
𝓊04  and 𝓊13 , are obtained first. Then the mean of virtual 
pixels, 𝒱04 and 𝒱13, is set to the final result. For horizontal and 
vertical virtual pixels, 𝒱h and 𝒱v, they can be deduced directly 
by Equa. (1)-(3). The only discrepancy is that their spatial 
correlations, 𝓊67 and 𝓊25, are simplified as follows. 

 𝓊67 = 1 − (𝒸v − 𝒸6) (𝒸7 − 𝒸6)⁄  (4) 

 𝓊25 = 1 − (𝓇v − 𝓇2) (𝓇5 − 𝓇2)⁄  (5) 

The expanded samples in different scales behave similar 
spatial structures with the original HSI patch, which maintains 
the consistency of the spatial contexts of each class. Thus, the 
inter-class similarity and intra-class distance will not increase 
during the feature extraction of FCN. 

 

C. Prior Correlation Evaluation 

The PCE module is designed to capture the salient spatial 
areas based on the spectral correlation between the center 
pixel and its neighboring pixels, thereby improving the 
effectiveness of subsequent feature extraction. 

Considering the instability of reflective energy of HSI, 
cosine distance, as an amplitude invariant measurement, is 
adopted to evaluate the spectral similarity between pixels. 
Then, a softmax activation function is utilized to convert the 
similarity into the importance coefficient. These processes can 
be summarized as follows. 

 𝓈i =
∑ 𝒳c⋅ 𝒳i

√∑ 𝒳c
2⋅√∑ 𝒳i

2
 (6) 

 𝓂i =
𝑒 𝓈i

∑ 𝑒 𝓈k𝜔×𝜔
k=1

 (7) 

where 𝒳c , 𝒳i  , 𝓈i , and 𝓂i  represent the center pixel, ith 
neighborhood, spectral similarity of between the center pixel 
and ith neighborhood, and the importance coefficient of ith 
neighborhood, separately. This kind of spectral-similarity-
based strategy has achieved good effects in exploring the 
relevant areas for HSI classification [28], [29]. 

 

D. 3-D Multi-scale Residual Fully Convolutional Network 

 

Fig. 3. Architecture of 3-D MRFCN. 

To extract the multi-scale features from the expanded 
samples in different sizes, a 3-D MRFCN which can fuse the 

features in different scales is constructed. As shown in Fig. 3, 
the samples in n scales share the identical architecture, which 
enables the network to handle strong feature representation 
with less parameters. The 3-D MRFCN contains four 3-D 
convolutional layers with rectified linear unit activation 
function for feature extraction and a prediction layer. To 
relieve the vanishing gradient, the residual connection (gray 
dotted arrows) is introduced between the feature extraction 
layers. The orange circles denote the average pooling layers 
which can adjust the shape of feature maps to realize the 
transition of gradients. An adaptive average pooling layer is 
applied to squeeze the spatial sizes of feature maps in n scales 
and then they are integrated by the element-wise addition. At 
last, the prediction layer which equipped with C kernels with 
the size of 1 × 1 × b' and softmax activation function decides 
the final label, where b' denotes the number of bands of the 
feature maps output by the fourth convolutional layer. 

 

III. EXPERIMENTS AND ANALYSES 

A. Data Sets and Configuration 

To prove the effectiveness of the proposed model, two 
publicly available HSI data sets [30], including Indian Pines 
and Botswana, are chose for experiments. Indian Pines data 
set was gathered by the Airborne Visible/Infrared Imaging 
Spectrometer sensor over Indian Pines test site. It consists of 
145×145 pixels and 200 available bands. There are 16 
categories in 10249 labeled pixels. Botswana data set was 
acquired by the Hyperion sensor mounted on the Earth 
Observing-1 satellite over the Okavango Delta, Botswana. It 
consists of 1476×256 pixels and 145 bands. There are 14 
categories in 3248 available labeled pixels. 

Before optimizing the proposed network, all samples are 
normalized by dividing the max grayscale value of data set 
and the parameters of all layers are initialized with Xavier 
normal distribution [31]. During the back propagation, the 
RMSprop optimizer [32] with the parameters (learning rate, 
beta1, beta2) = (0.001, 0.9, 0.999) is employed to reduce the 
error between true label and prediction. The batch-size and the 
number of iteration are set to 32 and 200, respectively. 

 

B. Classification Results 

In this section, the classification performance of proposed 
model is compared with other methods, including 3-D CNN 
[11], deep multi-scale spatial-spectral FCN (DMS3FCN) [20], 
spectral-spatial 3-D FCN (SS3FCN) [23], and nonlocal-
dependent learning network (NDL-Net) [25]. Each model is 
re-implemented according to the original article and shares the 
same samples as the proposed model. 

1) Quantitative Evaluation 
The numbers of training/test samples N, recall of each 

class, overall accuracy (OA), average accuracy (AA), kappa 
coefficient (κ), and training/test times T of different methods 
on two data sets are reported in Tables I and II. First, 
Compared with other four methods, the classification results 
of 3-D CNN are the lowest, but it cost the least time to finish 
training and test procedures with its simple architecture. 
Second, among three FCN-based models, DMS3FCN aims to 
extract the deep multi-scale spectral-spatial features and 
receives better classification accuracy than 3-D CNN. By 
flipping and rotating the training samples during model 
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training, SS3FCN obtain rich features when predict new 
samples. NDL-Net is good at capturing the long-distance 
dependency between different regions of a class. But the OA 
of it on Indian Pines data set is a little lower. The possible 
reason is that some classes, such as No. 1, No. 7, and No. 9, 
only have one subregion, which results in the invalid  non-
local dependency. Third, our proposed model achieves the 
best classification performances on two data sets, which gains 
the most number of the highest recalls, OAs, AAs, and κs. For 
the classes having more samples of Indian Pines data set, e. g. 
No. 3, No. 10, and No. 11, the predictions of the proposal are 
satisfying. Moreover, though the proposal spends relatively 
long time for training, the test time of it on two data sets are 
the least compared with other three FCN-base models. This is 
because the proposal adopts the share architecture for different 
scales of samples, which reduces the number of parameters. 

TABLE I. CLASSIFICATION PERFORMANCES OF DIFFERENT METHODS ON 

INDIAN PINES DATA SET WITH 15% TRAINING SAMPLES 

No. N 3-D CNN DMS3FCN SS3FCN NDL-Net Ours 

1 7/39 64.86  90.00  100.00  83.33  100.00  

2 214/1214 85.74  90.53  98.71  96.02  94.62  

3 124/706 88.55  95.55  94.06  94.06  99.81  

4 35/202 68.25  100.00  98.05  94.81  98.05  

5 73/410 89.15  95.54  99.68  98.73  94.59  

6 109/621 99.49  99.16  99.16  99.79  99.79  

7 5/23 52.17  94.44  100.00  88.89  100.00  

8 72/406 100.00  100.00  100.00  100.00  100.00  

9 3/17 62.50  100.00  100.00  69.23  100.00  

10 145/827 78.76  95.89  97.47  94.94  99.53  

11 368/2087 94.55  89.29  91.73  90.85  97.12  

12 88/505 80.80  97.40  95.06  92.21  95.32  

13 31/174 100.00  100.00  100.00  99.25  100.00  

14 190/1075 99.01  99.88  99.51  100.00  98.91  

15 58/328 88.35  96.41  99.20  95.62  96.81  

16 14/79 83.78  100.00  96.67  98.33  98.33  

OA  93.57 94.73  96.59  95.29  97.64  

AA  83.50 96.51  98.08  93.50  98.30  

κ  88.90 95.75  97.05  94.64  97.32  

T  295.57/1.56 482.69/4.22 546.35/5.55 466.84/4.85 494.39/3.54 

TABLE II. CLASSIFICATION PERFORMANCES OF DIFFERENT METHODS ON 

BOTSWANA DATA SET WITH 15% TRAINING SAMPLES 

No. N 3-D CNN DMS3FCN SS3FCN NDL-Net Ours 

1 41/229 100.00  100.00  100.00  100.00  100.00  

2 15/86 97.53  100.00  97.53  100.00  100.00  

3 38/213 100.00  97.00  94.50  97.50  100.00  

4 32/183 100.00  90.12  94.19  98.26  100.00  

5 40/229 90.28  88.43  99.86  97.69  100.00  

6 40/229 75.81  98.60  94.88  95.81  96.74  

7 39/220 100.00  100.00  100.00  100.00  100.00  

8 31/172 100.00  100.00  100.00  100.00  100.00  

9 47/267 100.00  99.20  99.20  94.02  100.00  

10 37/211 95.48  99.50  97.49  96.98  100.00  

11 46/259 100.00  100.00  100.00  100.00  100.00  

12 27/154 95.17  100.00  100.00  100.00  99.31  

13 40/228 100.00  88.84  94.42  99.07  100.00  

14 14/81 89.47  100.00  100.00  100.00  100.00  

OA  96.61 97.00  97.96  98.27  99.69  

AA  95.98 97.26  98.01  98.52  99.72  

κ  95.87 96.75  97.79  98.12  99.67  

T  157.81/0.90 269.21/1.66 393.25/1.92 300.18/1.77 354.58/1.22 

 

2) Qualitative Evaluation 
The classification maps of different methods on two data 

sets are presented in Fig. 4 and 5. Compared with ground truth 
(GT) maps, the predictions of the proposal are purer. There are 
less dotted noises and speckles in each region of class. Some 
details are amplified in white squares in Fig. 5. For the class 
No. 11 which has the most number of samples of Indian Pines 
data set, the proposal obtains the absolutely same prediction, 
including edges and interiors, as the GT map. According to 
Table II, only two classes, No. 6 and No. 12, are not predicted 
with 100% probabilities, which is a superior result. 

     
 (a) GT (b) 3-D CNN (c) DMS3FCN 

     
 (d) SS3FCN (e) NDL-Net (f) Ours 

Fig. 4. Classification maps of different methods on Indian Pines data set. 

      
 (a) GT (b) 3-D CNN (c) DMS3FCN (d) SS3FCN (e) NDL-Net (f) Ours 

Fig. 5. Classification maps of different methods on Botswana data set. 

C. Ablation Study 

TABLE III. OAS OF DIFFERENT COMBINATIONS OF MODULES 

  CSSSE PCE 3-D MRFCN OA 

Indian 
Pines 

Comb_1   ✓ 95.59  
Comb_2 ✓  ✓ 97.12  
Comb_3  ✓ ✓ 96.33  
Comb_4 ✓ ✓ ✓ 97.64  

Botswana 

Comb_1   ✓ 96.98  

Comb_2 ✓  ✓ 98.85  

Comb_3  ✓ ✓ 97.47  

Comb_4 ✓ ✓ ✓ 99.69  

 

To verify the rationality of each module of the proposal, 
different combinations of them are built for ablation study. As 
shown in Table III, Comb_4, also is the proposal, receives the 
highest OAs on two data sets. When the CSSSE and PCE 
modules are removed at the same time, the 3-D MRFCN is 
remained and achieves unsatisfying results. Compared with 
Comb_3, the CSSSE module will exert more improvement. 
This is because the PCE is designed to emphasize the relevant 
areas following the CSSSE module, which is a supplementary. 
If there is no CSSSE module ahead, the number of expanded 
samples will be reduced, which may weaken the positive 
influence of the PCE module. 
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D. Impact of Expansion Scale 

 

Fig. 6. OAs of the proposed model in different expansion scales. Where solid 

markers denote the default options. 

The CSSSE module generates different sizes of samples in 
different expansion scales. To seek for the proper expansion 
scale, the proposal is trained with seven expansion scales. As 
shown in Fig. 6, the trends of the OAs on two data sets both 
increase first and then decrease. The best expansion scales for 
two data sets are 4 and 5, separately. Expansion scales smaller 
than the optimal values enable the model to learn robust 
feature representation with limited parameters. However, it 
may be difficult for the model to fit the data distribution if a 
bigger expansion scale is adopted. Because the number of 
samples and the size of samples are increased simultaneously. 

 

E. Impact of Data Enhancement Method 

 

Fig. 7. OAs of the 3-D MRFCN with different data enhancement methods. 

To confirm the effectiveness of the CSSSE module, it is 
compared with other data enhancement methods, including 
flip, rotation, and rearrangement. It can be seen clearly from 
Fig. 7 that the combination of the CSSSE module and the 3-D 
MRFCN receives the highest OAs on two data sets compared 
with other three strategies. This is because the flip and rotation 
operations are not always effective for the FCN-based model. 
Rearrangement is also a unstable method as it may disturb the 
individual spatial distributions of each class, which will cause 
smaller inter-class distance. Therefore, the proposed CSSSE 
module is an effective way for data enhancement. 

 

F. Impact of Training Sample Proportion 

To investigate the classification performances of different 
methods further, they are trained with different proportions of 
training samples. As shown in Fig. 8, the more the samples is 
trained, the higher the OAs of all methods are. When the 
training proportion is set to 15%, the growth rates of all curves 
decrease and remain a relatively stable level. Thus, the default 
training sample proportions of two data sets are all set to 15%. 
From this figure, the OAs of the proposal are higher than those 
of other methods even the training proportion is set to 5%. 

   

Fig. 8. OAs of different methods with different training sample proportions 

on Indian Pines (left) and Botswana (right) data sets. 

 

IV. CONCLUSION 

In this paper, an FCN model with the CSSSE and PCE 
modules is proposed to extract the multi-scale discriminating 
spectral-spatial features for HSI classification. By considering 
the spectral correlation and spatial distance, the expanded 
samples generated by the CSSSE module have high credibility. 
The peculiar spatial structures of each class is well maintained 
in expanded multi-scale samples. The PCE module aims to 
emphasize the relevant areas of samples with the spectral 
similarity between the center pixel and neighborhoods before 
feature extraction. With the assistance of the two modules, the 
subsequent 3-D MRFCN can represent the salient spectral-
spatial features hidden in different scales of expanded samples. 
Experimental results on two classic HSI data sets demonstrate 
the rationality of the proposal and its superior classification 
performance compared with other state-of-the-arts. 
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